Quality assurance method for monitoring of lateral pencil beam positions in scanned carbon‐ion radiotherapy using tracking of secondary ions

2021 ◽  
Author(s):  
Renato Félix‐Bautista ◽  
Laura Ghesquière‐Diérickx ◽  
Lukáš Marek ◽  
Carlos Granja ◽  
Pavel Soukup ◽  
...  
2021 ◽  
Vol 85 ◽  
pp. 79-86
Author(s):  
Edoardo Mastella ◽  
Alfredo Mirandola ◽  
Stefania Russo ◽  
Alessandro Vai ◽  
Giuseppe Magro ◽  
...  

2010 ◽  
Vol 61 (2) ◽  
pp. 67-67
Author(s):  
S. Yasuda ◽  
S. Yamada ◽  
H. Imada ◽  
M. Shinoto ◽  
J. Mizoe ◽  
...  

2020 ◽  
Vol 40 (11) ◽  
pp. 6429-6435
Author(s):  
SHINNOSUKE MATSUMOTO ◽  
SUNG HYUN LEE ◽  
REIKO IMAI ◽  
TAKU INANIWA ◽  
NARUHIRO MATSUFUJI ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 339
Author(s):  
Giulia Buizza ◽  
Chiara Paganelli ◽  
Emma D’Ippolito ◽  
Giulia Fontana ◽  
Silvia Molinelli ◽  
...  

Skull-base chordoma (SBC) can be treated with carbon ion radiotherapy (CIRT) to improve local control (LC). The study aimed to explore the role of multi-parametric radiomic, dosiomic and clinical features as prognostic factors for LC in SBC patients undergoing CIRT. Before CIRT, 57 patients underwent MR and CT imaging, from which tumour contours and dose maps were obtained. MRI and CT-based radiomic, and dosiomic features were selected and fed to two survival models, singularly or by combining them with clinical factors. Adverse LC was given by in-field recurrence or tumour progression. The dataset was split in development and test sets and the models’ performance evaluated using the concordance index (C-index). Patients were then assigned a low- or high-risk score. Survival curves were estimated, and risk groups compared through log-rank tests (after Bonferroni correction α = 0.0083). The best performing models were built on features describing tumour shape and dosiomic heterogeneity (median/interquartile range validation C-index: 0.80/024 and 0.79/0.26), followed by combined (0.73/0.30 and 0.75/0.27) and CT-based models (0.77/0.24 and 0.64/0.28). Dosiomic and combined models could consistently stratify patients in two significantly different groups. Dosiomic and multi-parametric radiomic features showed to be promising prognostic factors for LC in SBC treated with CIRT.


Author(s):  
Hiroki Kobayashi ◽  
Satoshi Kobayashi ◽  
Masaki Shiota ◽  
Dai Takamatsu ◽  
Tatsuro Abe ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yang Li ◽  
Yoshiki Kubota ◽  
Masahiko Okamoto ◽  
Shintaro Shiba ◽  
Shohei Okazaki ◽  
...  

Abstract Background Daily anatomical deviations may distort the dose distribution in carbon ion radiotherapy (CIRT), which may cause treatment failure. Therefore, this study aimed to perform re-planning to maintain the dose coverage in patients with pancreatic cancer with passive scattering CIRT. Methods Eight patients with pancreatic cancer and 95 daily computed tomography (CT) sets were examined. Two types of adaptive plans based on new range compensators (RCs) (AP-1) and initial RCs (AP-2) were generated. In AP-2, each beam was optimized by manually adjusting the range shifter thickness and spread-out Bragg peak size to make dose reduction by < 3% of the original plan. Doses of the original plan with bone matching (BM) and tumor matching (TM) were examined for comparison. We calculated the accumulated dose using the contour and intensity-based deformable image registration algorithm. The dosimetric differences in respect to the original plan were compared between methods. Results Using TM and BM, mean ± standard deviations of daily CTV V95 (%) difference from the original plan was − 5.1 ± 6.2 and − 8.8 ± 8.8, respectively, but 1.2 ± 3.4 in AP-1 and − 0.5 ± 2.1 in AP-2 (P < 0.001). AP-1 and AP-2 enabled to maintain a satisfactory accumulated dose in all patients. The dose difference was 1.2 ± 2.8, − 2,1 ± 1.7, − 7.1 ± 5.2, and − 16.5 ± 15.0 for AP-1, AP-2, TM, and BM, respectively. However, AP-2 caused a dose increase in the duodenum, especially in the left–right beam. Conclusions The possible dose deterioration should be considered when performing the BM, even TM. Re-planning based on single beam optimization in passive scattering CIRT seems an effective and safe method of ensuring the treatment robustness in pancreatic cancer. Further study is necessary to spare healthy tissues, especially the duodenum.


Sign in / Sign up

Export Citation Format

Share Document