F···HO intramolecular hydrogen bond as the main transmission mechanism for 1hJF,H(O) coupling constant in 2′-fluoroflavonol

2012 ◽  
Vol 50 (8) ◽  
pp. 551-556 ◽  
Author(s):  
Tânia A. O. Fonseca ◽  
Teodorico C. Ramalho ◽  
Matheus P. Freitas
2010 ◽  
Vol 48 (9) ◽  
pp. 661-670 ◽  
Author(s):  
Andrei V. Afonin ◽  
Igor A. Ushakov ◽  
Alexander V. Vashchenko ◽  
Evgeniy V. Kondrashov ◽  
Alexander Yu. Rulev

2012 ◽  
Vol 8 ◽  
pp. 1227-1232 ◽  
Author(s):  
Fátima M P de Rezende ◽  
Marilua A Moreira ◽  
Rodrigo A Cormanich ◽  
Matheus P Freitas

Four diastereoisomers of 2-fluorobicyclo[2.2.1]heptan-7-ols were computationally investigated by using quantum-chemical calculations, and their relative energies were analyzed on the basis of stereoelectronic interactions, particularly the presence or otherwise of the F∙∙∙HO intramolecular hydrogen bond in the syn-exo isomer. It was found through NBO and AIM analyses that such an interaction contributes to structural stabilization and that the 1h J F,H(O) coupling constant in the syn-exo isomer is modulated by the n F→σ*OH interaction, i.e., the quantum nature of the F∙∙∙HO hydrogen bond.


Author(s):  
Reihaneh Heidarian ◽  
Mansoureh Zahedi-Tabrizi

: Leflunomide (LFM) and its active metabolite, teriflunomide (TFM), have drawn a lot of attention for their anticancer activities, treatment of rheumatoid arthritis and malaria due to their capability to inhibit dihydroorotate dehydrogenase (DHODH) and Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. In this investigation, the strength of intramolecular hydrogen bond (IHB) in five analogs of TFM (ATFM) has been analyzed employing density functional theory (DFT) using B3LYP/6-311++G (d, p) level and molecular orbital analysis in the gas phase and water solution. A detailed electronic structure study has been performed using the quantum theory of atoms in molecules (QTAIM) and the hydrogen bond energies (EHB) of stable conformer obtained in the range of 76-97 kJ/mol, as a medium hydrogen bond. The effect of substitution on the IHB nature has been studied by natural bond orbital analysis (NBO). 1H NMR calculations show an upward trend in the proton chemical shift of the enolic proton in the chelated ring (14.5 to 15.7ppm) by increasing the IHB strength. All the calculations confirmed the strongest IHB in 5-F-ATFM and the weakest IHB in 2-F-ATFM. Molecular orbital analysis, including the HOMO-LUMO gap and chemical hardness, was performed to compare the reactivity of inhibitors. Finally, molecular docking analysis was carried out to identify the potency of inhibition of these compounds against PfDHODH enzyme.


1985 ◽  
Vol 17 (5) ◽  
pp. 701-706 ◽  
Author(s):  
Kenji Kamide ◽  
Kunihiko Okajima ◽  
Keisuke Kowsaka ◽  
Toshihiko Matsui

2013 ◽  
Vol 9 ◽  
pp. 1127-1134 ◽  
Author(s):  
Josué M Silla ◽  
Rodrigo A Cormanich ◽  
Roberto Rittner ◽  
Matheus P Freitas

A 1 TS J F,H(O) coupling pathway, dictated by a hydrogen bond, in some 2-fluorobenzoic acids has been observed, while such an interaction does not occur in 2-fluorophenol. Thus, this work reports the conformational analysis of 2-fluorophenylboronic acid (1), in order to evaluate a possible intramolecular OH∙∙∙F hydrogen bond in comparison to an nF→pB interaction, which mimics the quantum nF→σ*OH hydrogen bond that would be expected in 2-fluorophenol. 2-Fluorophenylborane (3), which does not experience hydrogen bonding, was used to verify whether nF→pB interaction governs the conformational equilibrium in 1 due to a predominant OH∙∙∙F hydrogen bond or to other effects. A series of 2-X-phenylboranes (X = Cl, Br, NH2, PH2, OH and SH) were further computationally analyzed to search for electron donors to boron, capable of influencing the conformational equilibrium. Overall, the intramolecular OH∙∙∙F hydrogen bond in 1 is quite stabilizing and dictates the 1 h J F,H(O) coupling constant. Moreover, electron donation to the empty p orbital of boron (for noncoplanar BH2 moiety relative to the phenyl ring) is also significantly stabilizing for the NH2 and PH2 derivatives, but not enough to make the corresponding conformers appreciably populated, because of steric effects and the loss of πCC→pB resonance. Thus, the results found earlier for 2-fluorophenol about the lack of intramolecular hydrogen bonding are now corroborated.


Sign in / Sign up

Export Citation Format

Share Document