intramolecular hydrogen bond
Recently Published Documents


TOTAL DOCUMENTS

654
(FIVE YEARS 85)

H-INDEX

42
(FIVE YEARS 6)

Author(s):  
Chan Wang ◽  
Yimin He ◽  
Yalan Xu ◽  
Laizhi Sui ◽  
Tao Jiang ◽  
...  

Turn-on thermosensitive carbon dots (CDs) with dual function of imaging and sensing are desirable for biological research and clinical diagnosis at cellular level. Herein, we synthesized eight types of novel...


Author(s):  
Hao Wang ◽  
Hong-Wen Liang ◽  
Tian Jia ◽  
Zhenzhen Wang ◽  
Jia-Qi Wang ◽  
...  

Electron donor-acceptor (D-A) structure are the most common strategy to develop fluorescent dyes with high quantum yield in solution and the solid state. However, most of the D-A type fluorescent...


Author(s):  
Manuel Lange ◽  
Elisabeth Sennert ◽  
Martin A. Suhm

Prereactive complexes in noncovalent organocatalysis are sensitive to the relative chirality of the binding partners and to hydrogen bond isomerism. Both effects are present when a transiently chiral alcohol docks on a chiral α-hydroxy ester, turning such 1:1 complexes into elementary, non-reactive model systems for chirality induction in the gas phase. With the help of linear infrared and Raman spectroscopy in supersonic jet expansions, conformational preferences are investigated for benzyl alcohol in combination with methyl lactate, also exploring p-chlorination of the alcohol and the achiral homolog methyl glycolate to identify potential London dispersion and chirality effects on the energy sequence. Three of the four combinations prefer barrierless complexation via the hydroxy group of the ester (association). In contrast, the lightest complex shows predominantly insertion into the intramolecular hydrogen bond, like the analogous lactate and glycolate complexes of methanol. The experimental findings are rationalized with computations and a uniform helicality induction in the alcohol by the lactate is predicted, independent on insertion into or association with the internal lactate hydrogen bond. p-Chlorination of benzyl alcohol has a stabilizing effect on association, because the insertion motif prevents a close contact between the chlorine and the hydroxy ester. After simple anharmonicity and substitution corrections, the B3LYP-D3 approach offers a fairly systematic description of the known spectroscopic data on alcohol complexes with α-hydroxy esters.


Author(s):  
Alyssa A. DeLucia ◽  
Kimberly A. Kelly ◽  
Kevin A. Herrera ◽  
Danielle L. Gray ◽  
Lisa Olshansky

Sign in / Sign up

Export Citation Format

Share Document