scholarly journals Conformational analysis, stereoelectronic interactions and NMR properties of 2-fluorobicyclo[2.2.1]heptan-7-ols

2012 ◽  
Vol 8 ◽  
pp. 1227-1232 ◽  
Author(s):  
Fátima M P de Rezende ◽  
Marilua A Moreira ◽  
Rodrigo A Cormanich ◽  
Matheus P Freitas

Four diastereoisomers of 2-fluorobicyclo[2.2.1]heptan-7-ols were computationally investigated by using quantum-chemical calculations, and their relative energies were analyzed on the basis of stereoelectronic interactions, particularly the presence or otherwise of the F∙∙∙HO intramolecular hydrogen bond in the syn-exo isomer. It was found through NBO and AIM analyses that such an interaction contributes to structural stabilization and that the 1h J F,H(O) coupling constant in the syn-exo isomer is modulated by the n F→σ*OH interaction, i.e., the quantum nature of the F∙∙∙HO hydrogen bond.

2013 ◽  
Vol 9 ◽  
pp. 1127-1134 ◽  
Author(s):  
Josué M Silla ◽  
Rodrigo A Cormanich ◽  
Roberto Rittner ◽  
Matheus P Freitas

A 1 TS J F,H(O) coupling pathway, dictated by a hydrogen bond, in some 2-fluorobenzoic acids has been observed, while such an interaction does not occur in 2-fluorophenol. Thus, this work reports the conformational analysis of 2-fluorophenylboronic acid (1), in order to evaluate a possible intramolecular OH∙∙∙F hydrogen bond in comparison to an nF→pB interaction, which mimics the quantum nF→σ*OH hydrogen bond that would be expected in 2-fluorophenol. 2-Fluorophenylborane (3), which does not experience hydrogen bonding, was used to verify whether nF→pB interaction governs the conformational equilibrium in 1 due to a predominant OH∙∙∙F hydrogen bond or to other effects. A series of 2-X-phenylboranes (X = Cl, Br, NH2, PH2, OH and SH) were further computationally analyzed to search for electron donors to boron, capable of influencing the conformational equilibrium. Overall, the intramolecular OH∙∙∙F hydrogen bond in 1 is quite stabilizing and dictates the 1 h J F,H(O) coupling constant. Moreover, electron donation to the empty p orbital of boron (for noncoplanar BH2 moiety relative to the phenyl ring) is also significantly stabilizing for the NH2 and PH2 derivatives, but not enough to make the corresponding conformers appreciably populated, because of steric effects and the loss of πCC→pB resonance. Thus, the results found earlier for 2-fluorophenol about the lack of intramolecular hydrogen bonding are now corroborated.


In the article the results of the quantum chemical study of copper (II) solvato-complexes with acetonitrile (AN), tetrafluoroborate anion (BF4–) and 3-hydroxyflavone (flv) of the composition [Cu(AN)6]2+, [Cu(BF4)(AN)5]+, [Cu(flv)(AN)5]2+, [Cu(flv)(BF4)(AN)4]+ are presented. Calculations were done using density function theory (DFT) on the M06-2X/6-311++G(d,p) level of theory. Obtained results were interpreted in terms of complexes geometry and topology of electron density distribution using non-covalent interactions (NCI) approach. It was shown that flv molecule is a monodentate ligand in copper (II) complexes and coordinates central atom via carbonyl oxygen. Intramolecular hydrogen bond that exists in an isolated flv molecule was found to be broken upon [Cu(flv)(AN)5]2+ complex formation. In [Cu(flv)(AN)5]2+ complex, a significant rotation of phenyl ring over the planar chromone fragment was spotted as a consequence of intramolecular hydrogen bond breaking. Upon inclusion of BF4– anion to the first solvation shell of Cu2+, an intracomplex hydrogen bond was formed between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4– anion. NCI analysis had shown that a hydrogen bond between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4– anion is significantly stronger than intramolecular hydrogen bond in an isolated flv molecule. In addition, flexible phenyl ring of flv molecule in [Cu(flv)(BF4)(AN)4]+ complex was found to be internally stabilized by the weak van der Waals attraction between oxygen atoms of chromone ring and phenyl hydrogens. These evidences led to a conclusion that [Cu(flv)(BF4)(AN)4]+ complex is more stable, comparing to the in [Cu(flv)(AN)5]2+ complex.


Synthesis ◽  
2020 ◽  
Vol 52 (15) ◽  
pp. 2224-2232
Author(s):  
Boris A. Trofimov ◽  
Nina K. Gusarova ◽  
Nina I. Ivanova ◽  
Kseniya O. Khrapova ◽  
Pavel A. Volkov ◽  
...  

Tertiary α-hydroxyphosphine oxides have been synthesized via the catalyst- and solvent-free reaction between available secondary phosphine oxides and aliphatic, aromatic and heteroaromatic ketones at 20–62 °C in near to 96–98% yield. The developed method meets the requirements of green chemistry and the PASE (pot, atom, step economy) paradigm. According to quantum-chemical calculations at the B3LYP/6-311++G(d,p) level, the synthesized hydroxyphosphine oxides feature a weak (≈3 kcal·mol–1) O−H···O=P intramolecular hydrogen bond.


Sign in / Sign up

Export Citation Format

Share Document