Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach

2003 ◽  
Vol 50 (4) ◽  
pp. 708-716 ◽  
Author(s):  
Hongyu An ◽  
Weili Lin
2019 ◽  
Author(s):  
Alan J Stone ◽  
Naomi C Holland ◽  
Avery J L Berman ◽  
Nicholas P Blockley

AbstractQuantitative BOLD (qBOLD) is a technique for mapping oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) in the human brain. Recent measurements using an asymmetric spin echo (ASE) based qBOLD approach produced estimates of DBV which were systematically higher than measurements from other techniques. In this study, we investigate two hypotheses for the origin of this DBV overestimation using simulations and consider the implications for experimental measurements. Investigations were performed by combining Monte Carlo simulations of extravascular signal with an analytical model of the intravascular signal.Hypothesis 1DBV overestimation is due to the presence of intravascular signal which is not accounted for in the analysis model. Intravascular signal was found to have a weak effect on qBOLD parameter estimates.Hypothesis 2DBV overestimation is due to the effects of diffusion which are not accounted for in the analysis model. The effect of diffusion on the extravascular signal was found to result in a vessel radius dependent variation in qBOLD parameter estimates. In particular, DBV overestimation peaks for vessels with radii from 20 to 30 μm and is OEF dependent. This results in the systematic underestimation of OEF.ImplicationsThe impact on experimental qBOLD measurements was investigated by simulating a more physiologically realistic distribution of vessel sizes with a small number of discrete radii. Overestimation of DBV consistent with previous experiments was observed, which was also found to be OEF dependent. This results in the progressive underestimation of the measured OEF. Furthermore, the relationship between the measured OEF and the true OEF was found to be dependent on echo time and spin echo displacement time.The results of this study demonstrate the limitations of current ASE based qBOLD measurements and provide a foundation for the optimisation of future acquisition approaches.


1996 ◽  
Vol 81 (2) ◽  
pp. 895-904 ◽  
Author(s):  
M. F. Humer ◽  
P. T. Phang ◽  
B. P. Friesen ◽  
M. F. Allard ◽  
C. M. Goddard ◽  
...  

We tested the hypothesis that endotoxin increases the heterogeneity of gut capillary transit times and impairs oxygen extraction. The gut critical oxygen extraction ratio was determined by measuring multiple oxygen delivery-consumption points during progressive phlebotomy in eight control and eight endotoxin-infused anesthetized pigs. In multiple 1- to 2-g samples of small bowel, we measured blood volume (radiolabeled red blood cells) and flow (radiolabeled 15-microns microspheres) before and after critical oxygen extraction. Red blood cell transit time (= volume/flow) multiplied by morphologically determined capillary/total blood volume gave capillary transit time. During hemorrhage, capillary/total blood volume did not change in the endotoxin group (0.5 +/- 4.5%) but increased in the control group (17.6 +/- 2.5%; P < 0.05) due to a decrease in total gut blood volume. Flow decreased significantly in the endotoxin group (36 +/- 10%; P < 0.05) but not in the control group (12 +/- 10%). Capillary transit-time heterogeneity increased in the endotoxin group (12.3 +/- 4.9%) compared with the control group (-5.8 +/- 7.4%; P < 0.05), predicting a critical oxygen extraction ratio 0.14 lower in the endotoxin group than in the control group (K. R. Walley. J. Appl. Physiol. 81: 885–894, 1996). This matches the measured difference (endotoxin group, 0.60 +/- 0.04; control group, 0.74 +/- 0.03; P < 0.05). Increased heterogeneity of capillary transit times may be an important cause of impaired oxygen extraction.


2000 ◽  
Vol 38 (5) ◽  
pp. 830
Author(s):  
Soon Ho Cheong ◽  
Nam Hak Heo ◽  
Jeong Hun Kim ◽  
Young Kyun Choe ◽  
Young Jae Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document