Three‐dimensional whole‐brain simultaneous T1, T2, and T1 ρ quantification using MR Multitasking: Method and initial clinical experience in tissue characterization of multiple sclerosis

2020 ◽  
Vol 85 (4) ◽  
pp. 1938-1952
Author(s):  
Sen Ma ◽  
Nan Wang ◽  
Zhaoyang Fan ◽  
Marwa Kaisey ◽  
Nancy L. Sicotte ◽  
...  
2021 ◽  
Vol 25 (03) ◽  
pp. 409-417
Author(s):  
Omid Khalilzadeh ◽  
Laura M. Fayad ◽  
Shivani Ahlawat

AbstractHigh-resolution isotropic volumetric three-dimensional (3D) magnetic resonance neurography (MRN) techniques enable multiplanar depiction of peripheral nerves. In addition, 3D MRN provides anatomical and functional tissue characterization of different disease conditions affecting the peripheral nerves. In this review article, we summarize clinically relevant technical considerations of 3D MRN image acquisition and review clinical applications of 3D MRN to assess peripheral nerve diseases, such as entrapments, trauma, inflammatory or infectious neuropathies, and neoplasms.


2021 ◽  
Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Norbert G. Campeau ◽  
Robert J. Witte ◽  
Yi Sui ◽  
...  

Abstract Background: MR fingerprinting (MRF) is a novel imaging method proposed for the diagnosis of Multiple Sclerosis (MS). This study aims to determine if MR Fingerprinting (MRF) relaxometry can differentiate frontal normal appearing white matter (F-NAWM) and splenium in patients diagnosed with MS as compared to controls and to characterize the relaxometry of demyelinating plaques relative to the time of diagnosis.Methods: Three-dimensional (3D) MRF data were acquired on a 3.0T MRI system resulting in isotropic voxels (1x1x1mm3) and a total acquisition time of 4min 38s. Data were collected on 18 subjects paired with 18 controls. Regions of interested were drawn over MRF-derived T1 relaxometry maps encompassing selected MS lesions, F-NAWM and splenium. T1 and T2 relaxometry features from those segmented areas were used to classify MS lesions from F-NAWM and splenium with T-distributed stochastic neighbor embedding algorithms (T-SNE). Partial least squares discriminant analysis (PLS-DA) was performed to discriminate NAWM and Splenium in MS compared with controls. Results: Mean out-of-fold machine learning prediction accuracy for discriminant results between MS patients and controls for F-NAWM was 65% and approached 90% for the splenium. There was significant positive correlation between time since diagnosis and MS lesions mean T2 (p=0.015), minimum T1 (p=0.03) and negative correlation with splenium uniformity (p=0.04). Perfect discrimination (AUC=1) was achieved between selected features from MS lesions and F-NAWM.Conclusions: 3D-MRF has the ability to differentiate between MS and controls based on relaxometry properties from the F-NAWM and splenium. Whole brain coverage allows the assessment of quantitative properties within lesions that provide chronological assessment of the time from MS diagnosis.


Endoscopy ◽  
2000 ◽  
Vol 32 (8) ◽  
pp. 624-629 ◽  
Author(s):  
Yoshino ◽  
Nakazawa ◽  
Inui ◽  
Wakabayashi ◽  
Okushima ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Norbert G. Campeau ◽  
Robert J. Witte ◽  
Nicholas B. Larson ◽  
...  

Abstract Background MR fingerprinting (MRF) is a novel imaging method proposed for the diagnosis of Multiple Sclerosis (MS). This study aims to determine if MR Fingerprinting (MRF) relaxometry can differentiate frontal normal appearing white matter (F-NAWM) and splenium in patients diagnosed with MS as compared to controls and to characterize the relaxometry of demyelinating plaques relative to the time of diagnosis. Methods Three-dimensional (3D) MRF data were acquired on a 3.0T MRI system resulting in isotropic voxels (1 × 1 × 1 mm3) and a total acquisition time of 4 min 38 s. Data were collected on 18 subjects paired with 18 controls. Regions of interest were drawn over MRF-derived T1 relaxometry maps encompassing selected MS lesions, F-NAWM and splenium. T1 and T2 relaxometry features from those segmented areas were used to classify MS lesions from F-NAWM and splenium with T-distributed stochastic neighbor embedding algorithms. Partial least squares discriminant analysis was performed to discriminate NAWM and Splenium in MS compared with controls. Results Mean out-of-fold machine learning prediction accuracy for discriminant results between MS patients and controls for F-NAWM was 65 % (p = 0.21) and approached 90 % (p < 0.01) for the splenium. There was significant positive correlation between time since diagnosis and MS lesions mean T2 (p = 0.015), minimum T1 (p = 0.03) and negative correlation with splenium uniformity (p = 0.04). Perfect discrimination (AUC = 1) was achieved between selected features from MS lesions and F-NAWM. Conclusions 3D-MRF has the ability to differentiate between MS and controls based on relaxometry properties from the F-NAWM and splenium. Whole brain coverage allows the assessment of quantitative properties within lesions that provide chronological assessment of the time from MS diagnosis.


Radiology ◽  
1993 ◽  
Vol 186 (1) ◽  
pp. 147-152 ◽  
Author(s):  
G D Rubin ◽  
M D Dake ◽  
S A Napel ◽  
C H McDonnell ◽  
R B Jeffrey

Sign in / Sign up

Export Citation Format

Share Document