scholarly journals Whole Brain 3D MR Fingerprinting in Multiple Sclerosis: A Pilot Investigation

Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Norbert G. Campeau ◽  
Robert J. Witte ◽  
Yi Sui ◽  
...  

Abstract Background: MR fingerprinting (MRF) is a novel imaging method proposed for the diagnosis of Multiple Sclerosis (MS). This study aims to determine if MR Fingerprinting (MRF) relaxometry can differentiate frontal normal appearing white matter (F-NAWM) and splenium in patients diagnosed with MS as compared to controls and to characterize the relaxometry of demyelinating plaques relative to the time of diagnosis.Methods: Three-dimensional (3D) MRF data were acquired on a 3.0T MRI system resulting in isotropic voxels (1x1x1mm3) and a total acquisition time of 4min 38s. Data were collected on 18 subjects paired with 18 controls. Regions of interested were drawn over MRF-derived T1 relaxometry maps encompassing selected MS lesions, F-NAWM and splenium. T1 and T2 relaxometry features from those segmented areas were used to classify MS lesions from F-NAWM and splenium with T-distributed stochastic neighbor embedding algorithms (T-SNE). Partial least squares discriminant analysis (PLS-DA) was performed to discriminate NAWM and Splenium in MS compared with controls. Results: Mean out-of-fold machine learning prediction accuracy for discriminant results between MS patients and controls for F-NAWM was 65% and approached 90% for the splenium. There was significant positive correlation between time since diagnosis and MS lesions mean T2 (p=0.015), minimum T1 (p=0.03) and negative correlation with splenium uniformity (p=0.04). Perfect discrimination (AUC=1) was achieved between selected features from MS lesions and F-NAWM.Conclusions: 3D-MRF has the ability to differentiate between MS and controls based on relaxometry properties from the F-NAWM and splenium. Whole brain coverage allows the assessment of quantitative properties within lesions that provide chronological assessment of the time from MS diagnosis.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Norbert G. Campeau ◽  
Robert J. Witte ◽  
Nicholas B. Larson ◽  
...  

Abstract Background MR fingerprinting (MRF) is a novel imaging method proposed for the diagnosis of Multiple Sclerosis (MS). This study aims to determine if MR Fingerprinting (MRF) relaxometry can differentiate frontal normal appearing white matter (F-NAWM) and splenium in patients diagnosed with MS as compared to controls and to characterize the relaxometry of demyelinating plaques relative to the time of diagnosis. Methods Three-dimensional (3D) MRF data were acquired on a 3.0T MRI system resulting in isotropic voxels (1 × 1 × 1 mm3) and a total acquisition time of 4 min 38 s. Data were collected on 18 subjects paired with 18 controls. Regions of interest were drawn over MRF-derived T1 relaxometry maps encompassing selected MS lesions, F-NAWM and splenium. T1 and T2 relaxometry features from those segmented areas were used to classify MS lesions from F-NAWM and splenium with T-distributed stochastic neighbor embedding algorithms. Partial least squares discriminant analysis was performed to discriminate NAWM and Splenium in MS compared with controls. Results Mean out-of-fold machine learning prediction accuracy for discriminant results between MS patients and controls for F-NAWM was 65 % (p = 0.21) and approached 90 % (p < 0.01) for the splenium. There was significant positive correlation between time since diagnosis and MS lesions mean T2 (p = 0.015), minimum T1 (p = 0.03) and negative correlation with splenium uniformity (p = 0.04). Perfect discrimination (AUC = 1) was achieved between selected features from MS lesions and F-NAWM. Conclusions 3D-MRF has the ability to differentiate between MS and controls based on relaxometry properties from the F-NAWM and splenium. Whole brain coverage allows the assessment of quantitative properties within lesions that provide chronological assessment of the time from MS diagnosis.


2017 ◽  
Vol 25 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Maxime Donadieu ◽  
Yann Le Fur ◽  
Adil Maarouf ◽  
Soraya Gherib ◽  
Ben Ridley ◽  
...  

Background: Increase of brain total sodium concentrations (TSC) is present in multiple sclerosis (MS), but its pathological involvement has not been assessed yet. Objective: To determine in vivo the metabolic counterpart of brain sodium accumulation. Materials/methods: Whole brain 23Na-MR imaging and 3D-1H-EPSI data were collected in 21 relapsing-remitting multiple sclerosis (RRMS) patients and 20 volunteers. Metabolites and sodium levels were extracted from several regions of grey matter (GM), normal-appearing white matter (NAWM) and white matter (WM) T2 lesions. Metabolic and ionic levels expressed as Z-scores have been averaged over the different compartments and used to explain sodium accumulations through stepwise regression models. Results: MS patients showed significant 23Na accumulations with lower choline and glutamate–glutamine (Glx) levels in GM; 23Na accumulations with lower N-acetyl aspartate (NAA), Glx levels and higher Myo-Inositol (m-Ins) in NAWM; and higher 23Na, m-Ins levels with lower NAA in WM T2 lesions. Regression models showed associations of TSC increase with reduced NAA in GM, NAWM and T2 lesions, as well as higher total-creatine, and smaller decrease of m-Ins in T2 lesions. GM Glx levels were associated with clinical scores. Conclusion: Increase of TSC in RRMS is mainly related to neuronal mitochondrial dysfunction while dysfunction of neuro-glial interactions within GM is linked to clinical scores.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Limei Ma ◽  
Zijian Xu ◽  
Zhi Guo ◽  
Benjamin Watts ◽  
Jinyou Lin ◽  
...  

The three-dimensional (3D) dual-energy focal stacks (FS) imaging method has been developed to quickly obtain the spatial distribution of an element of interest in a sample; it is a combination of the 3D FS imaging method and two-dimensional (2D) dual-energy contrast imaging based on scanning transmission soft X-ray microscopy (STXM). A simulation was firstly performed to verify the feasibility of the 3D elemental reconstruction method. Then, a sample of composite nanofibers, polystyrene doped with ferric acetylacetonate [Fe(acac)3], was further investigated to quickly reveal the spatial distribution of Fe(acac)3 in the sample. Furthermore, the data acquisition time was less than that for STXM nanotomography under similar resolution conditions and did not require any complicated sample preparation. The novel approach of 3D dual-energy FS imaging, which allows fast 3D elemental mapping, is expected to provide invaluable information for biomedicine and materials science.


2014 ◽  
Vol 20 (11) ◽  
pp. 1464-1470 ◽  
Author(s):  
P Sati ◽  
DM Thomasson ◽  
N Li ◽  
DL Pham ◽  
NM Biassou ◽  
...  

Background: Susceptibility-based MRI offers a unique opportunity to study neurological diseases such as multiple sclerosis (MS). In this work, we assessed a three-dimensional segmented echo-planar-imaging (3D-EPI) sequence to rapidly acquire high-resolution T2*-weighted and phase contrast images of the whole brain. We also assessed if these images could depict important features of MS at clinical field strength, and we tested the effect of a gadolinium-based contrast agent (GBCA) on these images. Materials and methods: The 3D-EPI acquisition was performed on four healthy volunteers and 15 MS cases on a 3T scanner. The 3D sagittal images of the whole brain were acquired with a voxel size of 0.55 × 0.55 × 0.55 mm3 in less than 4 minutes. For the MS cases, the 3D-EPI acquisition was performed before, during, and after intravenous GBCA injection. Results: Both T2*-weighted and phase-contrast images from the 3D-EPI acquisition were sensitive to the presence of lesions, parenchymal veins, and tissue iron. Conspicuity of the veins was enhanced when images were obtained during injection of GBCA. Conclusions: We propose this rapid imaging sequence for investigating, in a clinical setting, the spatiotemporal relationship between small parenchymal veins, iron deposition, and lesions in MS patient brains.


2021 ◽  
pp. 0271678X2110480
Author(s):  
Junghun Cho ◽  
Thanh D Nguyen ◽  
Weiyuan Huang ◽  
Elizabeth M Sweeney ◽  
Xianfu Luo ◽  
...  

We aimed to demonstrate the feasibility of whole brain oxygen extraction fraction (OEF) mapping for measuring lesion specific and regional OEF abnormalities in multiple sclerosis (MS) patients. In 22 MS patients and 11 healthy controls (HC), OEF and neural tissue susceptibility ([Formula: see text]) maps were computed from MRI multi-echo gradient echo data. In MS patients, 80 chronic active lesions with hyperintense rim on quantitative susceptibility mapping were identified, and the mean OEF and [Formula: see text] within the rim and core were compared using linear mixed-effect model analysis. The rim showed higher OEF and [Formula: see text] than the core: relative to their adjacent normal appearing white matter, OEF contrast = −6.6 ± 7.0% vs. −9.8 ± 7.8% (p < 0.001) and [Formula: see text] contrast = 33.9 ± 20.3 ppb vs. 25.7 ± 20.5 ppb (p = 0.017). Between MS and HC, OEF and [Formula: see text]were compared using a linear regression model in subject-based regions of interest. In the whole brain, compared to HC, MS had lower OEF, 30.4 ± 3.3% vs. 21.4 ± 4.4% (p < 0.001), and higher [Formula: see text], −23.7 ± 7.0 ppb vs. −11.3 ± 7.7 ppb (p = 0.018). Our feasibility study suggests that OEF may serve as a useful quantitative marker of tissue oxygen utilization in MS.


Radiology ◽  
2015 ◽  
Vol 274 (1) ◽  
pp. 210-220 ◽  
Author(s):  
Vasily L. Yarnykh ◽  
James D. Bowen ◽  
Alexey Samsonov ◽  
Pavle Repovic ◽  
Angeli Mayadev ◽  
...  

Author(s):  
Nora Rat ◽  
Iolanda Muntean ◽  
Diana Opincariu ◽  
Liliana Gozar ◽  
Rodica Togănel ◽  
...  

Development of interventional methods has revolutionized the treatment of structural cardiac diseases. Given the complexity of structural interventions and the anatomical variability of various structural defects, novel imaging techniques have been implemented in the current clinical practice for guiding the interventional procedure and for selection of the device to be used. Three– dimensional echocardiography is the most used imaging method that has improved the threedimensional assessment of cardiac structures, and it has considerably reduced the cost of complications derived from malalignment of interventional devices. Assessment of cardiac structures with the use of angiography holds the advantage of providing images in real time, but it does not allow an anatomical description. Transesophageal Echocardiography (TEE) and intracardiac ultrasonography play major roles in guiding Atrial Septal Defect (ASD) or Patent Foramen Ovale (PFO) closure and device follow-up, while TEE is the procedure of choice to assess the flow in the Left Atrial Appendage (LAA) and the embolic risk associated with a decreased flow. On the other hand, contrast CT and MRI have high specificity for providing a detailed description of structure, but cannot assess the flow through the shunt or the valvular mobility. This review aims to present the role of modern imaging techniques in pre-procedural assessment and intraprocedural guiding of structural percutaneous interventions performed to close an ASD, a PFO, an LAA or a patent ductus arteriosus.


Sign in / Sign up

Export Citation Format

Share Document