Flexor carpi radialis surface electromyography electrode placement for evoked and voluntary measures

2015 ◽  
Vol 52 (5) ◽  
pp. 818-825 ◽  
Author(s):  
Lara A. Green ◽  
Jessica McGuire ◽  
David A. Gabriel
2009 ◽  
Vol 30 ◽  
pp. S15-S16
Author(s):  
Seif Sawalha ◽  
Gill Holmes ◽  
Danieli Trinca ◽  
Shreyash Gajjar ◽  
Alfie Bass

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7322
Author(s):  
Andrea Merlo ◽  
Maria Chiara Bò ◽  
Isabella Campanini

The brachioradialis muscle (BRD) is one of the main elbow flexors and is often assessed by surface electromyography (sEMG) in physiology, clinical, sports, ergonomics, and bioengineering applications. The reliability of the sEMG measurement strongly relies on the characteristics of the detection system used, because of possible crosstalk from the surrounding forearm muscles. We conducted a scoping review of the main databases to explore available guidelines of electrode placement on BRD and to map the electrode configurations used and authors’ awareness on the issues of crosstalk. One hundred and thirty-four studies were included in the review. The crosstalk was mentioned in 29 studies, although two studies only were specifically designed to assess it. One hundred and six studies (79%) did not even address the issue by generically placing the sensors above BRD, usually choosing large disposable ECG electrodes. The analysis of the literature highlights a general lack of awareness on the issues of crosstalk and the need for adequate training in the sEMG field. Three guidelines were found, whose recommendations have been compared and summarized to promote reliability in further studies. In particular, it is crucial to use miniaturized electrodes placed on a specific area over the muscle, especially when BRD activity is recorded for clinical applications.


1989 ◽  
Vol 32 (4) ◽  
pp. 849-856 ◽  
Author(s):  
John P. Preece ◽  
Richard S. Tyler

Minimum-detectable gaps for sinusoidal stimuli were measured for three users of a multi electrode cochlear prosthesis as functions of stimulus level, frequency, and electrode place within the cochlea. Stimulus level was scaled by sensation level and by growth-of-loudness functions generated for each condition by direct magnitude estimation. Minimum-detectable gaps decreased with increase in either sensation level or loudness, up to a plateau. When compared at equal sensation levels, the minimum-detectable gaps decreased with frequency increases. The frequency effect on minimum-detectable gaps is reduced if the data are considered at equal loudness. Comparison across place of stimulation within the cochlea showed minimum-detectable gaps to be shorter for more basal electrode placement at low stimulus levels. No differences in minimum-detectable gap as a function of place were found at higher stimulus levels.


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


Sign in / Sign up

Export Citation Format

Share Document