cochlear prosthesis
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 0)

H-INDEX

20
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Pamela Bhatti ◽  
Jessica Falcone ◽  
James McClellan


2020 ◽  
Vol 25 (Suppl. 1-2) ◽  
pp. 96-108 ◽  
Author(s):  
James O. Phillips ◽  
Leo Ling ◽  
Amy Nowack ◽  
Brenda Rebollar ◽  
Jay T. Rubinstein

Background: A combined vestibular and cochlear prosthesis may restore hearing and balance to patients who have lost both. To do so, the device should activate each sensory system independently. Objectives: In this study, we quantify auditory and vestibular interactions during interleaved stimulation with a combined 16-channel cochlear and 6-channel vestibular prosthesis in human subjects with both hearing and vestibular loss. Methods: Three human subjects were implanted with a combined vestibular and cochlear implant. All subjects had severe-to-profound deafness in the implanted ear. We provided combined stimulation of the cochlear and vestibular arrays and looked for interactions between these separate inputs. Our main outcome measures were electrically evoked slow-phase eye velocities during nystagmus elicited by brief trains of biphasic pulse stimulation of the vestibular end organs with and without concurrent stimulation of the cochlea, and Likert scale assessments of perceived loudness and pitch during stimulation of the cochlea, with and without concurrent stimulation of the vestibular ampullae. Results: All subjects had no auditory sensation resulting from semicircular canal stimulation alone, and no sensation of motion or slow-phase eye movement resulting from cochlear stimulation alone. However, interleaved cochlear stimulation did produce changes in the slow-phase eye velocities elicited by electrical stimulation. Similarly, interleaved semicircular canal stimulation did elicit changes in the perceived pitch and loudness resulting from stimulation at multiple sites in the cochlea. Conclusions: There are significant interactions between different sensory modalities during stimulation with a combined vestibular and cochlear prosthesis. Such interactions present potential challenges for stimulation strategies to simultaneously restore auditory and vestibular function with such an implant.



Author(s):  
G. Kalpana ◽  
Raja Krishnamoorthy ◽  
P. T. Kalaivaani

Active Electrodes (AEs) are electrodes which have integrated bio-amplifier circuitry and are known to be less susceptible to motion artifacts and environmental interference. In this work, a low-power and high-input impedance amplifier for active electrode application is implemented based on subthreshold biasing strategies. In this proposed Application Specific Integrated Circuit (ASIC) device was versatile and numerical to achieve a high degree of programmability. It could be adapted to any other external part of one cochlear prosthesis, the sound analyzer that could be driven by a Digital Signal Processor (DSP). This research work also discusses the measurement of the electrode-skin impedance mismatch between two electrodes while concurrently measuring a bioelectrical signal without degradation of the performance of the amplifier, the efficient, noise-optimized analysis of bioelectrical signals utilizing two-wired active buffer electrodes. The reduction of power-line interference when using amplifying electrodes employing autonomous adaption of the gain of the subsequent differential amplification. The amplifier’s features include offset compensation, Common Mode Rejection Ratio (CMRR) improvement in software and a bandwidth extending down to DC. The proposed active electrode amplifier is designed using 90 nm CMOS technology. Simulation results exhibit up to the change in noise immunity and lessening in power utilization contrasted with the traditional bio-amplifier design at a similar delay.



2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Alessandra Paffi ◽  
Francesca Camera ◽  
Chiara Carocci ◽  
Francesca Apollonio ◽  
Micaela Liberti

Tinnitus is a debilitating perception of sound in the absence of external auditory stimuli. It may have either a central or a peripheral origin in the cochlea. Experimental studies evidenced that an electrical stimulation of peripheral auditory fibers may alleviate symptoms but the underlying mechanisms are still unknown. In this work, a stochastic neuron model is used, that mimics an auditory fiber affected by tinnitus, to check the effects, in terms of firing reduction, of different kinds of electric stimulations, i.e., continuous wave signals and white Gaussian noise. Results show that both white Gaussian noise and continuous waves at tens of kHz induce a neuronal firing reduction; however, for the same amplitude of fluctuations, Gaussian noise is more efficient than continuous waves. When contemporary applied, signal and noise exhibit a cooperative effect in retrieving neuronal firing to physiological values. These results are a proof of concept that a combination of signal and noise could be delivered through cochlear prosthesis for tinnitus suppression.





2014 ◽  
Vol 100 (2) ◽  
pp. 341-352
Author(s):  
Mohamed Ghorbel ◽  
Amira Derbel ◽  
Fathi Kallel ◽  
Mounir Samet ◽  
Ahmed Ben Hamida


2011 ◽  
Vol 106 (5) ◽  
pp. 2423-2436 ◽  
Author(s):  
Maike Vollmer ◽  
Ralph E. Beitel

Temporal auditory processing is poor in prelingually hearing-impaired patients fitted with cochlear prostheses as adults. In an animal model of prelingual long-term deafness, we investigated the effects of behavioral training on temporal processing in the adult primary auditory cortex (AI). Neuronal responses to pulse trains of increasing frequencies were recorded in three groups of neonatally deafened cats that received a cochlear prosthesis after >3 yr of deafness: 1) acutely implanted animals that received no electric stimulation before study, 2) animals that received chronic-passive stimulation for several weeks to months before study, and 3) animals that received chronic-passive stimulation and additional behavioral training (signal detection). A fourth group of normal adult cats that was deafened acutely and implanted served as controls. The neuronal temporal response parameters of interest included the stimulus rate that evoked the maximum number of phase-locked spikes [best repetition rate (BRR)], the stimulus rate that produced 50% of the spike count at BRR (cutoff rate), the peak-response latency, and the first spike latency and timing-jitter. All long-deaf animals demonstrated a severe reduction in spiral ganglion cell density (mean, <6% of normal). Long-term deafness resulted in a significantly reduced temporal following capacity and spike-timing precision of cortical neurons in all parameters tested. Neurons in deaf animals that received only chronic-passive stimulation showed a gain in BRR but otherwise were similar to deaf cats that received no stimulation. In contrast, training with behaviorally relevant stimulation significantly enhanced all temporal processing parameters to normal levels with the exception of minimum latencies. These results demonstrate the high efficacy of learning-based remodeling of fundamental timing properties in cortical processing even in the adult, long-deaf auditory system, suggesting rehabilitative strategies for patients with long-term hearing loss.





Sign in / Sign up

Export Citation Format

Share Document