3D failure envelope of a rigid pile embedded in a cohesive soil using finite element limit analysis

Author(s):  
Noussaiba Graine ◽  
Mohammed Hjiaj ◽  
Kristian Krabbenhoft

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Weihua Luo ◽  
Minghua Zhao ◽  
Yao Xiao ◽  
Rui Zhang ◽  
Wenzhe Peng

By employing adaptive finite element limit analysis (AFELA), the seismic bearing capacity of strip footing on cohesive soil slopes are investigated. To consider the earthquake effects, the pseudostatic method is used. The upper and lower bounds for the seismic bearing capacity factor (Nce) are calculated, and the relative errors between them are found within 3% or better by adopting the adaptive mesh strategy. Based on the obtained results, design tables and charts are provided to facilitate engineers use, and the effects of footing position, undrained shear strength, slope angle, slope height, and pseudostatic acceleration coefficient are studied in detail. The collapse mechanisms are also discussed, including overall slope failure and foundation failure.





2021 ◽  
Vol 133 ◽  
pp. 104042
Author(s):  
William J.A.P. Beuckelaers ◽  
Kristine Vandenboer ◽  
Jonas Verbraecken ◽  
Stijn François


2014 ◽  
Vol 1065-1069 ◽  
pp. 19-22
Author(s):  
Zhen Feng Wang ◽  
Ke Sheng Ma

Based on ABAQUS finite element analysis software simulation, the finite element model for dynamic analysis of rigid pile composite foundation and superstructure interaction system is established, which selects the two kinds of models, by simulating the soil dynamic constitutive model, selecting appropriate artificial boundary.The influence of rigid pile composite foundation on balance and imbalance of varying rigidity is analyzed under seismic loads. The result shows that the maximum bending moment and the horizontal displacement of the long pile is much greater than that of the short pile under seismic loads, the long pile of bending moment is larger in the position of stiffness change. By constrast, under the same economic condition, the aseismic performance of of rigid pile composite foundation on balance of varying rigidity is better than that of rigid pile composite foundation on imbalance of varying rigidity.





Sign in / Sign up

Export Citation Format

Share Document