Experimental analysis of kaolinite particle orientation during triaxial path

Author(s):  
Mahdia Hattab ◽  
Jean-Marie Fleureau

Clay Minerals ◽  
1999 ◽  
Vol 34 (1) ◽  
pp. 89-98 ◽  
Author(s):  
N. J. Elton ◽  
L. F. Gate ◽  
J. J. Hooper

AbstractX-ray diffraction (XRD), infra red (IR) spectroscopy, gloss goniophotometry and stylus profilometry were used to investigate the alignment of kaolinite applied as a thin coating on a polyester film substrate. The principles and applicability of the analytical methods are reviewed and discussed in the context of a kaolinite coating. X-ray diffraction and transmission IR were used to measure kaolinite misalignment and orientation distribution in the coating. Transmission IR measures the coating bulk; XRD data are surface biased, but contain contributions from the bulk. Attenuated total reflectance-IR (ATR-IR) provides a direct measure of kaolinite alignment within ~1 µm of the coating surface and also allows an assessment of surface smoothness. Gloss goniophotometry and contact profilometry measure surface microroughness and macroroughness, respectively, rather than kaolinite particle orientation. However, the properties of roughness and orientation are related. Bulk and surface texture are not necessarily correlated and a combined approach using both bulk and surface sensitive techniques is required for a full understanding of coating structure.



Author(s):  
R. J. Horylev ◽  
L. E. Murr

Smith has shown by dark-field electron microscopy of extracted ThO2 particles from TD-nickel (2% ThO2) that they possess single crystal characteristics. It is generally assumed that these particle dispersions are incoherent. However, some diffraction effects associated with the particle images appeared to be similar to coherency strain fields. The present work will demonstrate conclusively that ThO2 dispersed particles in TD-nickel (2% ThO2) and TD-NiCr (2% ThO2, 20% Cr, Ni) are single crystals. Moreover, the diffraction contrast effects are extinction fringes. That is, these effects arise because of the particle orientation with respect to the electron beam and the extinction conditions for various operating reflections The particles are in fact incoherent.



Author(s):  
Joachim Frank

Compared with images of negatively stained single particle specimens, those obtained by cryo-electron microscopy have the following new features: (a) higher “signal” variability due to a higher variability of particle orientation; (b) reduced signal/noise ratio (S/N); (c) virtual absence of low-spatial-frequency information related to elastic scattering, due to the properties of the phase contrast transfer function (PCTF); and (d) reduced resolution due to the efforts of the microscopist to boost the PCTF at low spatial frequencies, in his attempt to obtain recognizable particle images.











2015 ◽  
Author(s):  
Aaron S. Richmond ◽  
Jared Becknell ◽  
Jeanne M. Slattery ◽  
Robin Morgan ◽  
Nathanael Mitchell


1984 ◽  
Author(s):  
Henry H. Emurian ◽  
Joseph V. Brady ◽  
Ronald L. Ray ◽  
James L. Meyerhoff ◽  
Edward H. Mougey


Sign in / Sign up

Export Citation Format

Share Document