Radial magnetic resonance imaging (MRI) using a rotating radiofrequency (RF) coil at 9.4 T

2017 ◽  
Vol 31 (2) ◽  
pp. e3860 ◽  
Author(s):  
Mingyan Li ◽  
Ewald Weber ◽  
Jin Jin ◽  
Thimo Hugger ◽  
Yasvir Tesiram ◽  
...  
2020 ◽  
Vol 6 (3) ◽  
pp. 24-27
Author(s):  
Maíra M. Garcia ◽  
Khallil T. Chaim ◽  
Maria C. G. Otaduy ◽  
Andreas Rennings ◽  
Daniel Erni ◽  
...  

AbstractDipole radiofrequency (RF) elements have been successfully used to compose multi-channel RF coils for ultrahigh fields (UHF) magnetic resonance imaging (MRI). As magnetic components of RF fields (B1) can be very inhomogeneous at UHF (B0≥7T), dielectric pads with high dielectric constants were proposed to improve the B1 efficiency and homogeneity [1]. Dielectric pads can be used as a passive B1 shimmimg technique thanks to inducing a strong secondary magnetic field in their vicinity. The use of such dielectric pads affect not only the B1 field but also the electric field. This in turn affects the specific absorption rate (SAR) and consequently the temperature distribution inside the patient’s body. To study these effects, a 29 cm-long transmission dipole RF coil element terminated by two meander was used for 7T MRI [2]. Using a cylindrical agarose-gel phantom, numerical and experimental results were analyzed with respect to homogeneity and amplitude of the magnetic and electric fields generated by the RF element in various configurations with and without dielectric pads. Calculated and measured B1 results were cross-checked and found to be in good agreement. When using dielectric pads B1 homogeneity and magnitude increase in regions where it was previously weak or insufficient. Calculations suggest that SAR distribution will change when using the pads.


2019 ◽  
Vol 5 (1) ◽  
pp. 525-528 ◽  
Author(s):  
Maíra M. Garcia ◽  
Tiago R. Oliveira ◽  
Daniel Papoti ◽  
Khallil T. Chaim ◽  
Maria C. G. Otaduy ◽  
...  

AbstractThe purpose of this work was to develop and investigate a radiofrequency (RF) coil to perform image studies on small animals using the 7T magnetic resonance imaging (MRI) system, installed in the imaging platform in the autopsy room (Portuguese acronym PISA), at the University of Sao Paulo, Brazil, which is the unique 7T MRI scanner installed in South America. Due to a high demand to create new specific coils for this 7T system, it is necessary to carefully assess the distribution of electromagnetic (EM) fields generated by the coils and evaluate the patient/object safety during MRI procedures. To achieve this goal 3D numerical methods were used to design and analyse a 8-rungs transmit/receive linearly driven birdcage coil for small animals. Calculated magnetic field (B1) distributions generated by the coil were crosschecked with measured results, indicating good confidence in the simulated results. Electric field results were post-processed and predictions of local specific absorption rate (SAR) values were achieved for a spherical phantom filled with muscle-like tissue, indicating that the sample would not suffer any unsafe deposition of energy. Post mortem abdomen images obtained from a rat presented good image quality and no artifacts related to field non-homogeneity were observed.


2016 ◽  
Vol 848 ◽  
pp. 347-350
Author(s):  
Chao Luo ◽  
Xiao Qing Hu ◽  
Chun Lai Li ◽  
Xiao Chen ◽  
Xiao Liang Zhang ◽  
...  

This paper presents an approach to investigate the influence of metamaterial to radio-frequency (RF) magnetic field in magnetic resonance imaging (MRI) at 3T. The variety of magnetic fields of RF receiving coil was calculated using the commercial electromagnetic simulation software (CST). The simulation results demonstrate that the transmitting and receiving magnetic field (B1+ and B1-) can be enhanced when the metamaterial is inserted into the RF coil, suggesting that the metamaterial has potential in MRI applications at 3T.


2019 ◽  
Vol 23 (04) ◽  
pp. 405-418 ◽  
Author(s):  
James F. Griffith ◽  
Radhesh Krishna Lalam

AbstractWhen it comes to examining the brachial plexus, ultrasound (US) and magnetic resonance imaging (MRI) are complementary investigations. US is well placed for screening most extraforaminal pathologies, whereas MRI is more sensitive and accurate for specific clinical indications. For example, MRI is probably the preferred technique for assessment of trauma because it enables a thorough evaluation of both the intraspinal and extraspinal elements, although US can depict extraforaminal neural injury with a high level of accuracy. Conversely, US is probably the preferred technique for examination of neurologic amyotrophy because a more extensive involvement beyond the brachial plexus is the norm, although MRI is more sensitive than US for evaluating muscle denervation associated with this entity. With this synergy in mind, this review highlights the tips for examining the brachial plexus with US and MRI.


Endoscopy ◽  
2004 ◽  
Vol 36 (10) ◽  
Author(s):  
BP McMahon ◽  
JB Frøkjær ◽  
A Bergmann ◽  
DH Liao ◽  
E Steffensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document