MLS-based variable-node elements compatible with quadratic interpolation. Part II: application for finite crack element

2005 ◽  
Vol 65 (4) ◽  
pp. 517-547 ◽  
Author(s):  
Young-Sam Cho ◽  
Seyoung Im
1973 ◽  
Vol 40 (2) ◽  
pp. 626-628 ◽  
Author(s):  
N. E. Ashbaugh
Keyword(s):  

2020 ◽  
Vol 22 (2) ◽  
pp. 130-144
Author(s):  
Aiqin Hou ◽  
Chase Qishi Wu ◽  
Liudong Zuo ◽  
Xiaoyang Zhang ◽  
Tao Wang ◽  
...  

1982 ◽  
Vol 2 (2) ◽  
pp. 123-130 ◽  
Author(s):  
J. A. GREGORY ◽  
R. DELBOURGO

Meccanica ◽  
2021 ◽  
Author(s):  
Tomasz Blaszczyk ◽  
Krzysztof Bekus ◽  
Krzysztof Szajek ◽  
Wojciech Sumelka

AbstractIn this paper, the Riesz-Caputo fractional derivative of variable order with fixed memory is considered. The studied non-integer differential operator is approximated by means of modified basic rules of numerical integration. The three proposed methods are based on polynomial interpolation: piecewise constant, piecewise linear, and piecewise quadratic interpolation. The errors generated by the described methods and the experimental rate of convergence are reported. Finally, an application of the Riesz-Caputo fractional derivative of space-dependent order in continuum mechanics is depicted.


2010 ◽  
Vol 159 ◽  
pp. 125-128
Author(s):  
A. Parshuta ◽  
V. Chitanov ◽  
Lilyana Kolaklieva ◽  
Roumen Kakanakov

The real electro-discharge polishing (EDP) system has been presented by an equivalent electrical scheme and described by a corresponded equation system. The Runge-Kutta-Merson method with automatically changed step is used for the numerical solution the equation system. The current through the resistor equivalent to the steam gas wrapper is defined with an I-V characteristic obtained by the method of multi-interval quadratic interpolation-approximation. A mathematical model of the power supply-load system has been realized in Basic and Matlab® languages. On the base of the developed modelling conditions limiting the current and voltage overload in the EDP system have been determined depending on the maximum polished area and the electrolyte temperature.


Sign in / Sign up

Export Citation Format

Share Document