On FEM-BEM coupling for fluid-structure interaction analyses in the time domain

1991 ◽  
Vol 31 (6) ◽  
pp. 1151-1168 ◽  
Author(s):  
O. Von Estorff ◽  
H. Antes
Author(s):  
Volker Carstens ◽  
Joachim Belz

The aeroelastic behaviour of vibrating blade assemblies is usually investigated in the frequency domain where the determination of aeroelastic stability boundaries is separated from the computation of linearized unsteady aerodynamic forces. However, nonlinear fluid-structure interaction caused by oscillating shocks or strong flow separation may significantly influence the aerodynamic damping and hence effect a shift of stability boundaries. In order to investigate such aeroelastic phenomena, the governing equations of structural and fluid motion have to be simultaneously integrated in time. In this paper a technique is presented which analyzes the aeroelastic behaviour of an oscillating compressor cascade in the time domain. The structural part of the governing aeroelastic equations is time-integrated according to the algorithm of Newmark, while the unsteady airloads are computed at every time step by an Euler upwind code, The link between the two time integrations is an automatic grid generation in which the used mesh is dynamically deformed as such that it conforms with the deflected blades at every time step. The computed time series of the aeroelastic simulation of an assembly of twenty compressor blades performing torsional vibrations in transonic flow are presented. For subsonic flow, the differences between time domain and frequency domain results are of negligible order. For transonic flow, however, where vibrating shocks and a temporarily choked flow in the blade channel dominate the unsteady flow, the energy transfer between fluid and structure is no longer comparable to that of a linear system. It is demonstrated that the application of the time domain method leads to a significantly different aeroelastic behaviour of the blade assembly including a shift of the stability boundary.


2018 ◽  
Vol 8 (10) ◽  
pp. 1844 ◽  
Author(s):  
David Ferras ◽  
Pedro Manso ◽  
Anton Schleiss ◽  
Dídia Covas

The present review paper aims at collecting and discussing the research work, numerical and experimental, carried out in the field of Fluid–Structure Interaction (FSI) in one-dimensional (1D) pressurized transient flow in the time-domain approach. Background theory and basic definitions are provided for the proper understanding of the assessed literature. A novel frame of reference is proposed for the classification of FSI models based on pipe degrees-of-freedom. Numerical research is organized according to this classification, while an extensive review on experimental research is presented by institution. Engineering applications of FSI models are described and historical accidents and post-accident analyses are documented.


Author(s):  
David Ferras ◽  
Pedro A. Manso ◽  
Anton J. Schleiss ◽  
Dídia I. C. Covas

The present review paper aims at collecting and discussing the research work, numerical and experimental, carried out in the field of Fluid-Structure Interaction (FSI) in one-dimensional (1D) pressurized transient flow in the time-domain approach. Background theory and basic definitions are provided for the proper understanding of the assessed literature. A novel frame of reference is proposed for the classification of FSI models based on pipe degrees-of-freedom. Numerical research is organized according to this classification, while an extensive review on experimental research is presented by institution. Engineering applications of FSI models are described and historical accidents and post-accident analyses documented.


2000 ◽  
Vol 123 (2) ◽  
pp. 402-408 ◽  
Author(s):  
Volker Carstens ◽  
Joachim Belz

The aeroelastic behavior of vibrating blade assemblies is usually investigated in the frequency domain where the determination of aeroelastic stability boundaries is separated from the computation of linearized unsteady aerodynamic forces. However, nonlinear fluid-structure interaction caused by oscillating shocks or strong flow separation may significantly influence the aerodynamic damping and hence effect a shift of stability boundaries. In order to investigate such aeroelastic phenomena, the governing equations of structural and fluid motion have to be simultaneously integrated in time. In this paper a technique is presented which analyzes the aeroelastic behavior of an oscillating compressor cascade in the time domain. The structural part of the governing aeroelastic equations is time-integrated according to the algorithm of Newmark, while the unsteady airloads are computed at every time step by an Euler upwind code. The link between the two time integrations is an automatic grid generation in which the used mesh is dynamically deformed as such that it conforms with the deflected blades at every time step. The computed time series of the aeroelastic simulation of an assembly of twenty compressor blades performing torsional vibrations in transonic flow are presented. For subsonic flow, the differences between time domain and frequency domain results are of negligible order. For transonic flow, however, where vibrating shocks and a temporarily choked flow in the blade channel dominate the unsteady flow, the energy transfer between fluid and structure is no longer comparable to that of a linear system. It is demonstrated that the application of the time domain method leads to a significantly different aeroelastic behavior of the blade assembly including a shift of the stability boundary.


Sign in / Sign up

Export Citation Format

Share Document