scholarly journals One-Dimensional Fluid–Structure Interaction Models in Pressurized Fluid-Filled Pipes: A Review

2018 ◽  
Vol 8 (10) ◽  
pp. 1844 ◽  
Author(s):  
David Ferras ◽  
Pedro Manso ◽  
Anton Schleiss ◽  
Dídia Covas

The present review paper aims at collecting and discussing the research work, numerical and experimental, carried out in the field of Fluid–Structure Interaction (FSI) in one-dimensional (1D) pressurized transient flow in the time-domain approach. Background theory and basic definitions are provided for the proper understanding of the assessed literature. A novel frame of reference is proposed for the classification of FSI models based on pipe degrees-of-freedom. Numerical research is organized according to this classification, while an extensive review on experimental research is presented by institution. Engineering applications of FSI models are described and historical accidents and post-accident analyses are documented.

Author(s):  
David Ferras ◽  
Pedro A. Manso ◽  
Anton J. Schleiss ◽  
Dídia I. C. Covas

The present review paper aims at collecting and discussing the research work, numerical and experimental, carried out in the field of Fluid-Structure Interaction (FSI) in one-dimensional (1D) pressurized transient flow in the time-domain approach. Background theory and basic definitions are provided for the proper understanding of the assessed literature. A novel frame of reference is proposed for the classification of FSI models based on pipe degrees-of-freedom. Numerical research is organized according to this classification, while an extensive review on experimental research is presented by institution. Engineering applications of FSI models are described and historical accidents and post-accident analyses documented.


Author(s):  
Gudrun Mikota ◽  
Rainer Haas ◽  
Evgeny Lukachev

Fluid-structure interaction in a bent pipeline is investigated by modal methods. Measured frequency response functions between flow rate excitation and pressure response indicate a coupling effect near the third pipeline resonance. Using modal coordinates for the hydraulic and the mechanical subsystems, a two-degrees-of-freedom study of resonance coupling is carried out. An experimental modal analysis of the coupled hydraulic-mechanical system confirms the predicted resonance splitting; it illustrates the coupling mechanism and shows the relevant mechanical part. An analytical fluid-structure interaction model succeeds in reproducing the measured coupling effect. This model is also used for modification prediction; it demonstrates that an appropriate assembly of mass and damping on the pipeline can help to reduce hydraulic resonance amplitudes.


Author(s):  
Vladimir Kudriavtsev ◽  
Satoyuki Kawano ◽  
T. Isoyama ◽  
H. Arai ◽  
T. Yambe ◽  
...  

We analyze sinusoidal pulsating flow that develops in the vibrating flow pump (VFP) artificial heart casing. In such system flow is induced by the axial movements of the vibrating pipe. Pipe is capped with the flexible thin disk that is called jelly-fish valve (JFV). Valve is opened during the downward pipe motion and is closed during the upward motion. Valve movement is very similar with the movement of falcon wings. It is due to the pipe motion and happens under the influence of fluid inertial, JFV spring, fluid shear and pressure forces. Authors utilized industrial strength CFD-ACE+/FEMSTRESS software package from CFDRC to analyze dynamic fluid-structure interaction, flow velocity field and time-dependent vorticity distribution. It was shown in the previous studies that blood hemolysis is closely correlated with the maximum values of vorticity fianction ω. In the paper we analyzed valve deformation, related flowfield and vorticity at different transient flow conditions. We can clearly conclude that dynamic formulation allows us to estimate and pinpoint with much greater accuracy the local maxima in vorticity. Vorticity peaks in two areas. First zone is at valve/pipe throat and second zone is at the casing throat. Vorticity is highest at the casing wall, thus pointing the direction for design improvements. Reduction in JFV stiffness helps to open valve wider and to reduce flow vorticity in its vicinity. These are work-in-progress results and additional studies will follow.


Author(s):  
Erwan Liberge ◽  
Mustapha Benaouicha ◽  
Aziz Hamdouni

This paper describes Reduced Order Modeling (ROM) in Fluid Structure Interaction (FSI) and discusses Proper Orthogonal Decomposition (POD) utilization. The ROM method was selected because its performance in fluid mechanics. The principal problems of its application in FSI are due the space character of the modes resulting from the POD whereas domains are mobile. To use POD in moving domain, a charateristic function of fluid is introduced in order to work on a fixed rigid domain, and the global velocity (fluid and structure) is studied. The POD modes efficiency is tested to reconstruct velocity field in one and two-dimensional FSI case. Then reducing dynamic system using POD is introduced in moving boundaries problem. In addition, the one dimensional case of Burgers equation coupled with spring equation is tested.


Sign in / Sign up

Export Citation Format

Share Document