Three-dimensional fundamental solution for transversely isotropic piezothermoelastic material

2008 ◽  
Vol 78 (1) ◽  
pp. 84-100 ◽  
Author(s):  
P. F. Hou ◽  
A. Y. T. Leung ◽  
C. P. Chen
Author(s):  
V. Mantič ◽  
L. Távara ◽  
J.E. Ortiz ◽  
F. París

<p class="p1">Explicit closed-form real-variable expressions of a fundamental solution and its derivatives for three-dimensional problems in transversely linear elastic isotropic solids are presented. The expressions of the fundamental solution in displacements <span class="s1">U</span><span class="s2">ik </span>and its derivatives, originated by a unit point force, are valid for any combination of material properties and for any orientation of the radius vector between the source and field points. An ex- pression of <span class="s1">U</span><span class="s2">ik </span>in terms of the Stroh eigenvalues on the oblique plane normal to the radius vector is used as starting point. Working from this expression of <span class="s1">U</span><span class="s2">ik</span>, a new approach (based on the application of the rotational symmetry of the material) for deducing the first and second order derivative kernels, <span class="s1">U</span><span class="s2">ik,j </span>and <span class="s1">U</span><span class="s2">ik,jl </span>respectively, has been developed. The expressions of the fundamental solution and its derivatives do not suffer from the difficulties of some previous expressions, obtained by other authors in different ways, with complex valued functions appearing for some combinations of material parameters and/or with division by zero for the radius vector at the rotational symmetry axis. The expressions of <span class="s1">U</span><span class="s2">ik</span>, <span class="s1">U</span><span class="s2">ik,j </span>and <span class="s1">U</span><span class="s2">ik,jl </span>are presented in a form suitable for an efficient computational implementation in BEM codes.</p>


2012 ◽  
Vol 39 (2) ◽  
pp. 165-184 ◽  
Author(s):  
Rajneesh Kumar ◽  
Vijay Chawla

The aim of the present investigation is to study the fundamental solution for three dimensional problem in transversely isotropic thermoelastic diffusion medium. After applying the dimensionless quantities, two displacement functions are introduced to simplify the basic threedimensional equations of thermoelastic diffusion with transverse isotropy for the steady state problem. Using the operator theory, we have derived the general expression for components of displacement, mass concentration, temperature distribution and stress components. On the basis of general solution, three dimensional fundamental solutions for a point heat source in an infinite thermoelastic diffusion media is obtained by introducing four new harmonic functions. From the present investigation, a special case of interest is also deduced to depict the effect of diffusion.


2017 ◽  
Vol 84 (11) ◽  
Author(s):  
Yilan Huang ◽  
Guozhan Xia ◽  
Weiqiu Chen ◽  
Xiangyu Li

Exact solutions to the three-dimensional (3D) contact problem of a rigid flat-ended circular cylindrical indenter punching onto a transversely isotropic thermoporoelastic half-space are presented. The couplings among the elastic, hydrostatic, and thermal fields are considered, and two different sets of boundary conditions are formulated for two different cases. We use a concise general solution to represent all the field variables in terms of potential functions and transform the original problem to the one that is mathematically expressed by integral (or integro-differential) equations. The potential theory method is extended and applied to exactly solve these integral equations. As a consequence, all the physical quantities of the coupling fields are derived analytically. To validate the analytical solutions, we also simulate the contact behavior by using the finite element method (FEM). An excellent agreement between the analytical predictions and the numerical simulations is obtained. Further attention is also paid to the discussion on the obtained results. The present solutions can be used as a theoretical reference when practically applying microscale image formation techniques such as thermal scanning probe microscopy (SPM) and electrochemical strain microscopy (ESM).


2018 ◽  
Vol 32 (3) ◽  
pp. 775-802 ◽  
Author(s):  
Francesco Marmo ◽  
Salvatore Sessa ◽  
Nicoló Vaiana ◽  
Daniela De Gregorio ◽  
Luciano Rosati

Sign in / Sign up

Export Citation Format

Share Document