Parallel implementation of implicit finite element model with cohesive zones and collision response using CUDA

2018 ◽  
Vol 115 (7) ◽  
pp. 771-790 ◽  
Author(s):  
Igor Gribanov ◽  
Rocky Taylor ◽  
Robert Sarracino
Joint Rail ◽  
2002 ◽  
Author(s):  
Steven W. Kirkpatrick ◽  
Robert A. MacNeill

The paper describes the development of a detailed finite element model that is capable of predicting the response of a rail passenger car to collision conditions. This model was developed to predict the car crush, the three-dimensional gross motions of the car, and the vertical, lateral, and longitudinal accelerations experienced by the car during collisions. The finite element model developed was for a Pioneer passenger coach car. This vehicle was used in a single car impact test. The model was then used to simulate the test and the results are compared to the test data.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document