Improved Schwarz methods for an elliptic problem in a nonconvex domain with discontinuous coefficients

2009 ◽  
Vol 25 (2) ◽  
pp. 440-459 ◽  
Author(s):  
Chokri Chniti
2019 ◽  
Vol 40 (2) ◽  
pp. 1577-1600
Author(s):  
Gang Chen ◽  
Jintao Cui

Abstract Hybridizable discontinuous Galerkin (HDG) methods retain the main advantages of standard discontinuous Galerkin (DG) methods, including their flexibility in meshing, ease of design and implementation, ease of use within an $hp$-adaptive strategy and preservation of local conservation of physical quantities. Moreover, HDG methods can significantly reduce the number of degrees of freedom, resulting in a substantial reduction of computational cost. In this paper, we study an HDG method for the second-order elliptic problem with discontinuous coefficients. The numerical scheme is proposed on general polygonal and polyhedral meshes with specially designed stabilization parameters. Robust a priori and a posteriori error estimates are derived without a full elliptic regularity assumption. The proposed a posteriori error estimators are proved to be efficient and reliable without a quasi-monotonicity assumption on the diffusion coefficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yaqin Jiang

We propose a BDDC preconditioner for the rotatedQ1finite element method for second order elliptic equations with piecewise but discontinuous coefficients. In the framework of the standard additive Schwarz methods, we describe this method by a complete variational form. We show that our method has a quasioptimal convergence behavior; that is, the condition number of the preconditioned problem is independent of the jumps of the coefficients and depends only logarithmically on the ratio between the subdomain size and the mesh size. Numerical experiments are presented to confirm our theoretical analysis.


1996 ◽  
Vol 72 (3) ◽  
pp. 313-348 ◽  
Author(s):  
Maksymilian Dryja ◽  
Marcus V. Sarkis ◽  
Olof B. Widlund

2012 ◽  
Vol 12 (1) ◽  
pp. 73-91 ◽  
Author(s):  
Leszek Marcinkowski ◽  
Talal Rahman

AbstractThis paper is concerned with the construction and analysis of a parallel preconditioner for a FETI-DP system of equations arising from the nonconforming Crouzeix-Raviart finite element discretization of a model elliptic problem of second order with discontinuous coefficients. We show that the condition number of the preconditioned problem is independent of the coefficient jumps, and the preconditioner is quasi optimal.


2018 ◽  
Vol 52 (6) ◽  
pp. 2457-2477
Author(s):  
Victorita Dolean ◽  
Martin J. Gander ◽  
Erwin Veneros

Discretized time harmonic Maxwell’s equations are hard to solve by iterative methods, and the best currently available methods are based on domain decomposition and optimized transmission conditions. Optimized Schwarz methods were the first ones to use such transmission conditions, and this approach turned out to be so fundamentally important that it has been rediscovered over the last years under the name sweeping preconditioners, source transfer, single layer potential method and the method of polarized traces. We show here how one can optimize transmission conditions to take benefit from the jumps in the coefficients of the problem, when they are aligned with the subdomain interface, and obtain methods which converge for two subdomains in certain situations independently of the mesh size, which would not be possible without jumps in the coefficients.


2010 ◽  
Vol 10 (2) ◽  
pp. 164-176 ◽  
Author(s):  
M. Dryja ◽  
M. Sarkis

AbstractA second order elliptic problem with highly discontinuous coefficients has been considered. The problem is discretized by two methods: 1) continuous finite element method (FEM) and 2) composite discretization given by a continuous FEM inside the substructures and a discontinuous Galerkin method (DG) across the boundaries of these substructures. The main goal of this paper is to design and analyze parallel algorithms for the resulting discretizations. These algorithms are additive Schwarz methods (ASMs) with special coarse spaces spanned by functions that are almost piecewise constant with respect to the substructures for the first discretization and by piecewise constant functions for the second discretization. It has been established that the condition number of the preconditioned systems does not depend on the jumps of the coefficients across the substructure boundaries and outside of a thin layer along the substructure boundaries. The algorithms are very well suited for parallel computations.


Sign in / Sign up

Export Citation Format

Share Document