Actuator fault detection for the discrete‐time switched systems based on delta operator approach

Author(s):  
Dongsheng Du ◽  
Yu Wu ◽  
Yue Yang ◽  
Zehui Mao
2021 ◽  
Author(s):  
Ghassen Marouani ◽  
Thach Ngoc Dinh ◽  
Tarek Raissi ◽  
Shyam Kamal ◽  
Hassani Messaoud

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shuo Li ◽  
Zhengrong Xiang ◽  
Hamid Reza Karimi

This paper is concerned with the problem of finite-timel1-gain control for positive switched systems with time-varying delay via delta operator approach. Firstly, sufficient conditions which can guarantee thel1-gain finite-time boundedness of the underlying system are given by using the average dwell time approach and constructing an appropriate copositive type Lyapunov-Krasovskii functional in delta domain. Moreover, the obtained conditions can unify some previously suggested relevant results seen in literature of both continuous and discrete systems into the delta operator framework. Then, based on the results obtained, a state feedback controller is designed to ensure that the resulting closed-loop system is finite-time bounded with anl1-gain performance. Finally, a numerical example is presented to demonstrate the effectiveness and feasibility of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4138
Author(s):  
Hao Zhao ◽  
Hao Luo ◽  
Yunkai Wu

This paper is concerned with the fault detection issue for a class of discrete-time switched systems via the data-driven approach. For the fault detection of switched systems, it is inevitable to consider the mode matching problem between the activated subsystem and the executed residual generator since the mode mismatching may cause a false fault alarm in all probability. Frequently, studies assume that the switching laws are available to the residual generator, by which the residual generator keeps the same mode as the system plant and then the mode mismatching is excluded. However, this assumption is conservative and impractical because many switching laws are hard to acquire in practical applications. This work focuses on the case of switched systems with unavailable switching laws. In view of the unavailability of switching information, the mode recognition is considered for the fault detection process and meanwhile, sufficient conditions are presented for the mode distinguishability. Moreover, a novel decision logic for the fault detection is proposed, based on which new algorithms are established for the data-driven realization. Finally, a benchmark case on a three-tank system is used to illustrate the feasibility and usefulness of the obtained results.


2013 ◽  
Vol 33 (3) ◽  
pp. 733-759 ◽  
Author(s):  
Hongjiu Yang ◽  
Xuan Li ◽  
Zhixin Liu ◽  
Changchun Hua

Sign in / Sign up

Export Citation Format

Share Document