scholarly journals Improving the inverse kinematics reconstruction of human movement from motion capture data

PAMM ◽  
2010 ◽  
Vol 10 (1) ◽  
pp. 93-94
Author(s):  
Christian Simonidis ◽  
Wolfgang Seemann
2021 ◽  
Vol 17 (34) ◽  
pp. 170-180
Author(s):  
Juan Camilo Hernandez-Gomez ◽  
Alejandro Restrepo-Martínez ◽  
Juliana Valencia-Aguirre

Clasificar el movimiento humano se ha convertido en una necesidad tecnológica, en donde para definir la posición de un sujeto requiere identificar el recorrido de las extremidades y el tronco del cuerpo, y tener la capacidad de diferenciar esta posición respecto a otros sujetos o movimientos, generándose la necesidad tener datos y algoritmos que faciliten su clasificación. Es así, como en este trabajo, se evalúa la capacidad discriminante de datos de captura de movimiento en rehabilitación física, donde la posición de los sujetos es adquirida con el Kinect de Microsoft y marcadores ópticos, y atributos del movimiento generados con el marco de Frenet Serret, evaluando su capacidad discriminante con los algoritmos máquinas de soporte vectorial, redes neuronales y k vecinos más cercanos. Los resultados presentan porcentajes de acierto del 93.5% en la clasificación con datos obtenidos del Kinect, y un éxito del 100% para los movimientos con marcadores ópticos. Classify human movement has become a technological necessity, where defining the position of a subject requires identifying the trajectory of the limbs and trunk of the body, having the ability to differentiate this position from other subjects or movements, which generates the need to have data and algorithms that help their classification. Therefore, the discriminant capacity of motion capture data in physical rehabilitation is evaluated, where the position of the subjects is acquired with the Microsoft Kinect and optical markers. Attributes of the movement generated with the Frenet Serret framework. Evaluating their discriminant capacity by means of support vector machines, neural networks, and k nearest neighbors algorithms. The obtained results present an accuracy of 93.5% in the classification with data obtained from the Kinect, and success of 100% for movements where the position is defined with optical markers.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Huaijun Wang ◽  
Dandan Du ◽  
Junhuai Li ◽  
Wenchao Ji ◽  
Lei Yu

Motion capture technology plays an important role in the production field of film and television, animation, etc. In order to reduce the cost of data acquisition and improve the reuse rate of motion capture data and the effect of movement style migration, the synthesis technology of motion capture data in human movement has become a research hotspot in this field. In this paper, kinematic constraints (KC) and cyclic consistency (CC) network are employed to study the methods of kinematic style migration. Firstly, cycle-consistent adversarial network (CCycleGAN) is constructed, and the motion style migration network based on convolutional self-encoder is used as a generator to establish the cyclic consistent constraint between the generated motion and the content motion, so as to improve the action consistency between the generated motion and the content motion and eliminate the lag phenomenon of the generated motion. Then, kinematic constraints are introduced to normalize the movement generation, so as to solve the problems such as jitter and sliding step in the movement style migration results. Experimental results show that the generated motion of the cyclic consistent style transfer method with kinematic constraints is more similar to the style of style motion, which improves the effect of motion style transfer.


2016 ◽  
Vol 28 (6) ◽  
pp. 781-789 ◽  
Author(s):  
Kiyotaka Fukui ◽  
◽  
Katsuyoshi Tsujita ◽  

[abstFig src='/00280006/01.jpg' width='300' text='A suitable design for the assist system for human meal' ] Some persons require assistance with their movements during meals. A support system for such persons would be invaluable. However, in designing such a system, crucial challenges such as freedom of movement arrangement and maneuverability of the system without disturbing human body movement have to be overcome. In this study, we extracted the major modes of human meal movement from meal movement motion-capture data and derived a suitable and feasible arrangement that reduces maneuverability variance in the workspace via iterative calculations based on inverse kinematics. The results of analyses indicate that the shoulder’s extension/flection and external/internal motions and the elbow’s extension/flection are suitable arrangements that give the freedom to equalize maneuverability in the workspace.


2011 ◽  
Vol 29 (supplement) ◽  
pp. 283-304 ◽  
Author(s):  
Timothy R. Brick ◽  
Steven M. Boker

Among the qualities that distinguish dance from other types of human behavior and interaction are the creation and breaking of synchrony and symmetry. The combination of symmetry and synchrony can provide complex interactions. For example, two dancers might make very different movements, slowing each time the other sped up: a mirror symmetry of velocity. Examining patterns of synchrony and symmetry can provide insight into both the artistic nature of the dance, and the nature of the perceptions and responses of the dancers. However, such complex symmetries are often difficult to quantify. This paper presents three methods – Generalized Local Linear Approximation, Time-lagged Autocorrelation, and Windowed Cross-correlation – for the exploration of symmetry and synchrony in motion-capture data as is it applied to dance and illustrate these with examples from a study of free-form dance. Combined, these techniques provide powerful tools for the examination of the structure of symmetry and synchrony in dance.


2015 ◽  
Vol 51 ◽  
pp. 1-7 ◽  
Author(s):  
Irene Cheng ◽  
Amirhossein Firouzmanesh ◽  
Anup Basu

Sign in / Sign up

Export Citation Format

Share Document