scholarly journals Analysis of crack formation in bonded lap joints using finite fracture mechanics on the basis of linear elasticity solutions.

PAMM ◽  
2011 ◽  
Vol 11 (1) ◽  
pp. 181-182
Author(s):  
Philipp Weißgraeber ◽  
Wilfried Becker
2011 ◽  
Vol 471-472 ◽  
pp. 1075-1080 ◽  
Author(s):  
Philipp Weißgraeber ◽  
Wilfried Becker

For the widespread use of adhesive joints an exact and reliable prediction of the strength is mandatory. In this work, a new approach to assess the strength of single lap joints is presented. The approach is based on the hybrid criterion as postulated by Leguillon in the framework of finite fracture mechanics. It strictly combines a consideration of an energy release balance and a fulfillment of a strength criterion. The present work is based on a simple model of the joint behavior and assumptions about crack initiation. From the stress distribution of the classical shear lag theory an incremental energy release rate is derived and is used to formulate the optimization problem of the failure load. The resulting predictions of critical failure loads are compared to experimental results of single lap joints. It is shown that the new approach is able to physically describe crack formation and the corresponding critical load within the framework and limitations of the underlying assumptions and simplifications. The work closes with a discussion of the limitations and an outlook on possible improvements of the underlying models and assumptions.


Meccanica ◽  
2021 ◽  
Author(s):  
A. Sapora ◽  
G. Efremidis ◽  
P. Cornetti

AbstractTwo nonlocal approaches are applied to the borehole geometry, herein simply modelled as a circular hole in an infinite elastic medium, subjected to remote biaxial loading and/or internal pressure. The former approach lies within the framework of Gradient Elasticity (GE). Its characteristic is nonlocal in the elastic material behaviour and local in the failure criterion, hence simply related to the stress concentration factor. The latter approach is the Finite Fracture Mechanics (FFM), a well-consolidated model within the framework of brittle fracture. Its characteristic is local in the elastic material behaviour and non-local in the fracture criterion, since crack onset occurs when two (stress and energy) conditions in front of the stress concentration point are simultaneously met. Although the two approaches have a completely different origin, they present some similarities, both involving a characteristic length. Notably, they lead to almost identical critical load predictions as far as the two internal lengths are properly related. A comparison with experimental data available in the literature is also provided.


Sign in / Sign up

Export Citation Format

Share Document