scholarly journals Lineage tracing suggests that ovarian endosalpingiosis does not result from escape of oviductal epithelium

2019 ◽  
Vol 249 (2) ◽  
pp. 206-214 ◽  
Author(s):  
Yisheng Wang ◽  
Michael S Sessine ◽  
Yali Zhai ◽  
Courtney Tipton ◽  
Kevin McCool ◽  
...  
2019 ◽  
Vol 14 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Aravinth P. Jawahar ◽  
Siddharth Narayanan ◽  
Gopalakrishnan Loganathan ◽  
Jithu Pradeep ◽  
Gary C. Vitale ◽  
...  

Islet cell auto-transplantation is a novel strategy for maintaining blood glucose levels and improving the quality of life in patients with chronic pancreatitis (CP). Despite the many recent advances associated with this therapy, obtaining a good yield of islet infusate still remains a pressing challenge. Reprogramming technology, by making use of the pancreatic exocrine compartment, can open the possibility of generating novel insulin-producing cells. Several lineage-tracing studies present evidence that exocrine cells undergo dedifferentiation into a progenitor-like state from which they can be manipulated to form insulin-producing cells. This review will present an overview of recent reports that demonstrate the potential of utilizing pancreatic ductal cells (PDCs) for reprogramming into insulin- producing cells, focusing on the recent advances and the conflicting views. A large pool of ductal cells is released along with islets during the human islet isolation process, but these cells are separated from the pure islets during the purification process. By identifying and improving existing ductal cell culture methods and developing a better understanding of mechanisms by which these cells can be manipulated to form hormone-producing islet-like cells, PDCs could prove to be a strong clinical tool in providing an alternative beta cell source, thus helping CP patients maintain their long-term glucose levels.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Felipe Rodriguez Tirado ◽  
Payel Bhanja ◽  
Eduardo Castro-Nallar ◽  
Ximena Diaz Olea ◽  
Catalina Salamanca ◽  
...  

Abstract Background Radiation-induced rectal epithelial damage is a very common side effect of pelvic radiotherapy and often compromise the life quality and treatment outcome in patients with pelvic malignancies. Unlike small bowel and colon, effect of radiation in rectal stem cells has not been explored extensively. Here we demonstrate that Lgr5-positive rectal stem cells are radiosensitive and organoid-based transplantation of rectal stem cells mitigates radiation damage in rectum. Methods C57Bl6 male mice (JAX) at 24 h were exposed to pelvic irradiation (PIR) to determine the radiation effect in pelvic epithelium. Effect of PIR on Lgr5-positive rectal stem cells (RSCs) was determined in Lgr5-EGFP-Cre-ERT2 mice exposed to PIR. Effect of PIR or clinically relevant fractionated PIR on regenerative response of Lgr5-positive RSCs was examined by lineage tracing assay using Lgr5-eGFP-IRES-CreERT2; Rosa26-CAG-tdTomato mice with tamoxifen administration to activate Cre recombinase and thereby marking the ISC and their respective progeny. Ex vivo three-dimensional organoid cultures were developed from Lgr5-EGFP-Cre-ERT2 mice. Organoid growth was determined by quantifying the budding crypt/total crypt ratio. Organoids from Lgr5-EGFP-ires-CreERT2-TdT mice were transplanted in C57Bl6 male mice exposed to PIR. Engraftment and repopulation of Lgr5-positive RSCs were determined after tamoxifen administration to activate Cre recombinase in recipient mice. Statistical analysis was performed using Log-rank (Mantel-Cox) test and paired two-tail t test. Result Exposure to pelvic irradiation significantly damaged rectal epithelium with the loss of Lgr5+ve rectal stem cells. Radiosensitivity of rectal epithelium was also observed with exposure to clinically relevant fractionated pelvic irradiation. Regenerative capacity of Lgr5+ve rectal stem cells was compromised in response to fractionated pelvic irradiation. Ex vivo organoid study demonstrated that Lgr5+ve rectal stem cells are sensitive to both single and fractionated radiation. Organoid-based transplantation of Lgr5+ve rectal stem cells promotes repair and regeneration of rectal epithelium. Conclusion Lgr5-positive rectal stem cells are radiosensitive and contribute to radiation-induced rectal epithelial toxicity. Transplantation of Lgr5-positive rectal stem cells mitigates radiation-induced rectal injury and promotes repair and regeneration process in rectum.


Cell Research ◽  
2021 ◽  
Author(s):  
Xiaofei Wang ◽  
Ran Zhou ◽  
Yanzhen Xiong ◽  
Lingling Zhou ◽  
Xiang Yan ◽  
...  

AbstractGlioblastoma (GBM) is an incurable and highly heterogeneous brain tumor, originating from human neural stem/progenitor cells (hNSCs/hNPCs) years ahead of diagnosis. Despite extensive efforts to characterize hNSCs and end-stage GBM at bulk and single-cell levels, the de novo gliomagenic path from hNSCs is largely unknown due to technical difficulties in early-stage sampling and preclinical modeling. Here, we established two highly penetrant hNSC-derived malignant glioma models, which resemble the histopathology and transcriptional heterogeneity of human GBM. Integrating time-series analyses of whole-exome sequencing, bulk and single-cell RNA-seq, we reconstructed gliomagenic trajectories, and identified a persistent NSC-like population at all stages of tumorigenesis. Through trajectory analyses and lineage tracing, we showed that tumor progression is primarily driven by multi-step transcriptional reprogramming and fate-switches in the NSC-like cells, which sequentially generate malignant heterogeneity and induce tumor phenotype transitions. We further uncovered stage-specific oncogenic cascades, and among the candidate genes we functionally validated C1QL1 as a new glioma-promoting factor. Importantly, the neurogenic-to-gliogenic switch in NSC-like cells marks an early stage characterized by a burst of oncogenic alterations, during which transient AP-1 inhibition is sufficient to inhibit gliomagenesis. Together, our results reveal previously undercharacterized molecular dynamics and fate choices driving de novo gliomagenesis from hNSCs, and provide a blueprint for potential early-stage treatment/diagnosis for GBM.


Sign in / Sign up

Export Citation Format

Share Document