Sustainable approach to produce 3D ‐printed continuous carbon fiber composites: “A comparison of virgin and recycled PETG”

2021 ◽  
Author(s):  
Guy J. P. Bex ◽  
Bastiaan L. J. Ingenhut ◽  
Tessa Cate ◽  
Meltem Sezen ◽  
Guralp Ozkoc
Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 328
Author(s):  
Ritesh Ghimire ◽  
Frank Liou

Multifunctional carbon fiber composites provide promising results such as high strength-to-weight ratio, thermal and electrical conductivity, high-intensity radiated field, etc. for aerospace applications. Tailoring the electrical and structural properties of 3D-printed composites is the critical step for multifunctional performance. This paper presents a novel method for evaluating the effects of the coating material system on the continuous carbon fiber strand on the multifunctional properties of 3D-printed composites and the material’s microstructure. A new method was proposed for the quasi-static characterization of the Compressive-Electrical properties on the additively manufactured continuous carbon fiber solid laminate composites. In this paper, compressive and electrical conductivity tests were simultaneously conducted on the 3D-printed test coupons at ambient temperature. This new method modified the existing method of addressing monofunctional carbon fiber composites by combining the monofunctionality of two or more material systems to achieve the multifunctional performance on the same component, thereby reducing the significant weight. The quasi-static multifunctional properties reported a maximum compressive load of 4370 N, ultimate compressive strength of 136 MPa, and 61.2 G Ohms of electrical resistance. The presented method will significantly reduce weight and potentially replace the bulky electrical wires in spacecraft, unmanned aircraft systems (UAS), and aircraft.


2011 ◽  
Vol 124 (1) ◽  
pp. 190-194 ◽  
Author(s):  
Istvánné Ráthy ◽  
Ákos Kuki ◽  
Jenö Borda ◽  
György Deák ◽  
Miklós Zsuga ◽  
...  

2019 ◽  
Vol 26 ◽  
pp. 227-241 ◽  
Author(s):  
Juan Naranjo-Lozada ◽  
Horacio Ahuett-Garza ◽  
Pedro Orta-Castañón ◽  
Wilco M.H. Verbeeten ◽  
Daniel Sáiz-González

2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983569 ◽  
Author(s):  
Jun Zhang ◽  
Zude Zhou ◽  
Fan Zhang ◽  
Yuegang Tan ◽  
Renhui Yi

Currently, carbon fiber composite has been applied in the field of three-dimensional printing to produce the high-performance parts with complex geometric features. This technique comprise both the advantages of three-dimensional printing and the material, which are light weight, high strength, integrated molding, and without mold, and the limitation of model complexity. In order to improve the performance of three-dimensional printing process using carbon fiber composite, in this article, a novel molding process of three-dimensional printing for continuous carbon fiber composites is developed, including the construction of printing material, the design of printer nozzle, and the modification of printing process. A suitable structure of nozzle on the printer is adjusted for the continuous carbon fiber composites. For the sake of ensuring the continuity of composited material during the processing, a cutting algorithm for jumping point is proposed to improve the printing path during process. On this basis, the experiment of continuous carbon fiber composite is performed and the mechanical properties of the printed test samples are analyzed. The results show that the tensile strength and bending strength of the sample printed by polylactic acid–continuous carbon fiber composites increased by 204.7% and 116.3%, respectively compared with pure polylactic acid materials, and those of the sample printed by nylon–continuous carbon fiber composites increased by 301.1% and 17.4% compared with pure nylon materials, and those of test sample by nylon–continuous carbon fiber composites under the heated and pressurized treatment increased by 383.6% and 233.2% compared with pure nylon material.


Sign in / Sign up

Export Citation Format

Share Document