Experimental study of polymeric stent fabrication using homemade 3D printing system

2019 ◽  
Vol 59 (6) ◽  
pp. 1122-1131 ◽  
Author(s):  
Danyang Zhao ◽  
Ruiqi Zhou ◽  
Jianxing Sun ◽  
Hongxia Li ◽  
Yifei Jin
2021 ◽  
Vol 124 ◽  
pp. 103577
Author(s):  
Mohamed Gomaa ◽  
Wassim Jabi ◽  
Alejandro Veliz Reyes ◽  
Veronica Soebarto
Keyword(s):  

Author(s):  
Morteza Vatani ◽  
Faez Alkadi ◽  
Jae-Won Choi

A novel additive manufacturing algorithm was developed to increase the consistency of three-dimensional (3D) printed curvilinear or conformal patterns on freeform surfaces. The algorithm dynamically and locally compensates the nozzle location with respect to the pattern geometry, motion direction, and topology of the substrate to minimize lagging or leading during conformal printing. The printing algorithm was implemented in an existing 3D printing system that consists of an extrusion-based dispensing module and an XYZ-stage. A dispensing head is fixed on a Z-axis and moves vertically, while the substrate is installed on an XY-stage and moves in the x–y plane. The printing algorithm approximates the printed pattern using nonuniform rational B-spline (NURBS) curves translated directly from a 3D model. Results showed that the proposed printing algorithm increases the consistency in the width of the printed patterns. It is envisioned that the proposed algorithm can facilitate nonplanar 3D printing using common and commercially available Cartesian-type 3D printing systems.


Author(s):  
Francis Brun ◽  
Florindo Gaspar ◽  
Artur Mateus ◽  
João Vitorino ◽  
Francisco Diz

2018 ◽  
Vol 7 (2.23) ◽  
pp. 68 ◽  
Author(s):  
Anton V. Mironov ◽  
Aleksandra O. Mariyanac ◽  
Olga A. Mironova ◽  
Vladimir K. Popov

Present work describes the results of the development of the universal system, which capable to utilize varies 3D printing methodologies. The main goal of the study is to provide cheap, versatile and easy expandable equipment for multiple purpose research in the field of material science. 3D printing system was experimentally validated for fused deposition modeling, hydrogel, liquid dispensing and drop-on-demand printing, as well as 3D photopolymerisation by UV laser and/or LED light using different types of materials.  


Author(s):  
H Liu ◽  
X Cheng ◽  
X H Yang ◽  
G M Zheng ◽  
Q J Guo

Sign in / Sign up

Export Citation Format

Share Document