printed patterns
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 38)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Minki Lee ◽  
Sajjan Parajuli ◽  
Hyeokgyun Moon ◽  
Ryungeun Song ◽  
Saebom Lee ◽  
...  

Abstract The rheological properties of silver inks are analyzed, and the printing results are presented based on the inks and roll-to-roll printing speed. The shear viscosity, shear modulus, and extensional viscosity of the inks are measured using rotational and extensional rheometers. The inks exhibit the shear thinning power law fluids because the concentration of dispersed nanoparticles in the solvent is sufficiently low, which minimizes elasticity. After the inks are printed on a flexible substrate through gravure printing, the optical images, surface profiles, and electric resistances of the printed pattern are obtained. The width and height of the printed pattern change depending on the ink viscosity, whereas the printing speed does not significantly affect the widening. The drag-out tail is reduced at high ink viscosities and fast printing speeds, thereby improving the printed pattern quality in the roll-to-roll process. Based on the results obtained, we suggest ink and printing conditions that result in high printing quality for complicated printings, such as overlay printing registration accuracy, which imposes pattern widening and drag-out tails in printed patterns.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1538
Author(s):  
Lothar Koch ◽  
Andrea Deiwick ◽  
Boris Chichkov

Bioprinting is seen as a promising technique for tissue engineering, with hopes of one day being able to produce whole organs. However, thick tissue requires a functional vascular network, which naturally contains vessels of various sizes, down to capillaries of ~10 µm in diameter, often spaced less than 200 µm apart. If such thick tissues are to be printed, the vasculature would likely need to be printed at the same time, including the capillaries. While there are many approaches in tissue engineering to produce larger vessels in a defined manner, the small capillaries usually arise only in random patterns by sprouting from the larger vessels or from randomly distributed endothelial cells. Here, we investigated whether the small capillaries could also be printed in predefined patterns. For this purpose, we used a laser-based bioprinting technique that allows for the combination of high resolution and high cell density. Our aim was to achieve the formation of closed tubular structures with lumina by laser-printed endothelial cells along the printed patterns on a surface and in bioprinted tissue. This study shows that such capillaries are directly printable; however, persistence of the printed tubular structures was achieved only in tissue with external stimulation by other cell types.


Author(s):  
Andrea Ehrmann ◽  
Pia Steinmetz

Combining textile fabrics with 3D printing has been investigated intensively during the last years. Mostly, research concentrated on the adhesion between both partners of the composite or on the new freedom of design, enabled by combining these techniques. Here, we present examinations of the influence of elastic 3D printed patterns on the elongation and wearing out of elastic textile fabrics as well as on the tribological properties of the textile surface, comparing pure and imprinted textile fabrics. Therefore, thermoplastic polyurethane (TPU) was 3D printed in different patterns on diverse textile fabrics. Our study shows that for a sufficient adhesion, reached by small enough nozzle-fabric distance, elastic 3D printed patterns can indeed improve the surface resistance against wear.


Open Ceramics ◽  
2021 ◽  
pp. 100197
Author(s):  
J. Yus ◽  
Z. Gonzalez ◽  
A.J. Sanchez-Herencia ◽  
A. Sangiorgi ◽  
A. Sanson ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2583
Author(s):  
Hsuan-Chin Lu ◽  
Ying-Chih Liao

In this study, we presented a wearable sensor patch for the early detection of extravasation by using a simple, direct printing process. Silver nanowire (AgNW) ink was first formulated to provide necessary rheological properties to print patterns on flexible plastic sheets. By adjusting printing parameters, alignments of AgNWs in the printed patterns were controlled to enhance the resistance change under stretching conditions. A resistive strain-sensing device was then fabricated by printing patterned electrodes on a stretchable film for skin attachment. The designed sensor pattern was able to detect forces from a specific direction from the resistance change. Moreover, the sensor showed excellent sensitivity (gauge factor (GF) = 100 at 50% strain) and could be printed in small dimensions. Sensors of millimeter size were printed in an array and were used for multiple detection points in a large area to detect extravasation at small volumes (<0.5 mL) at accurate bump location.


2021 ◽  
Vol 2 (3) ◽  
pp. 394-412
Author(s):  
Michael Orrill ◽  
Dustin Abele ◽  
Michael J. Wagner ◽  
Saniya LeBlanc

In the field of printed electronics, there is a pressing need for printable resistors, particularly ones where the resistance can be varied without changing the size of the resistor. This work presents ink synthesis and printing results for variable resistance, inkjet-printed patterns of a novel and sustainable carbon nanomaterial—multilayer graphene nanoshells. Dispersed multilayer graphene nanospheres are sterically stabilized by a surfactant (Triton X100), and no post-process is required to achieve the resistive functionality. A surface tension-based adsorption analysis technique is used to determine the optimal surfactant dosage, and a geometric model explains the conformation of adsorbed surfactant molecules. The energetic interparticle potentials between approaching particles are modeled to assess and compare the stability of sterically and electrostatically stabilized multilayer graphene nanoshells. The multilayer graphene nanoshell inks presented here show a promising new pathway toward sustainable and practical printed resistors that achieve variable resistances within a constant areal footprint without post-processing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kacper Skarżyński ◽  
Jakub Krzemiński ◽  
Małgorzata Jakubowska ◽  
Marcin Słoma

AbstractRecently, low-cost electronics printed on lightweight, flexible and 3D shaped substrates are gaining importance in the markets of wearables and smart packaging. However, printed electronics do not meet the electrical performance of subtractive techniques because the resistivity of metallic printed patterns is still much higher than that of bulk material. To fulfil this need, low-resistive and easy printable inks for high resolution printed electronics techniques are needed. In this work, parameters of silver nanoparticles ink for micro-scale printed electronics technique, Aerosol Jet Printing, are being enhanced. To increase electrical conductivity and enhance printability, surfactants and dispersing agents were used to increase ultrasonic atomisation efficiency, obtain a uniform structure of printed lines, and narrow the width of printed patterns. Electrical measurements show a decrease in resistivity value in samples enhanced by cationic and non-ionic surfactants, by 95%, compared to initially prepared inks. Surfactant additions to silver nanoparticles Aerosol Jet Printing ink show promising features for application in modern electronics.


Author(s):  
Sayli Jambhulkar ◽  
Weiheng Xu ◽  
Yuxiang Zhu ◽  
Dharneedar Ravichandran ◽  
Kenan Song

Abstract Directed particle assembly has broad applications in sensors, actuators, microelectronics, robotics, and the biomedical area. Currently available methods include external fields such as electrical or magnetic fields, surface treatment on substrates, and DNA-assisted templates. However, these methods are most efficient at the nanoscale and would lose their efficiency and scalability above microscales. We reported in this research the uses of the 3D printed surface to direct the assembly of nanoparticles. We used carbon nanofibers (CNFs) as an example to show the long-range orders after dipping the 3D printed substrates in CNFs suspensions. The anchoring of CNFs at the solid-liquid-air contact lines will initiate the assembly procedure and further induced the neighboring CNFs because of the van der Waals forces. As a result, the CNFs formed well-regulated bands with controlled spacing and close-packing. These assembled CNFs were demonstrated in sensing applications. A gauge factor regulated the methanol at different concentrations and temperatures to pass the sensor, with the device resistivity change. In this way, the sensitivity as a function of analyte concentration and temperatures was obtained. This research studied nanoparticles’ microscale assembly based on a simple 3D printing surface and shed light on a new hybrid manufacturing for nanoparticle assembly.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1926
Author(s):  
Naiyu Liu ◽  
Zhikun Zheng ◽  
Dingshan Yu ◽  
Wei Hong ◽  
Hailu Liu ◽  
...  

The development of invisible patterns via programmable patterning can lead to promising applications in optical encryption. This study reports a facile method for building responsive photonic crystal patterns. Commercially printed patterns were used as a mask to induce invisible patterns revealed by wetting. The masked areas exhibit different swelling kinetics, leading to strong structural colors in the masked area and transparent features in the unmasked area. The contrast could disappear through different wetting behavior, providing a unique and reversible wetting feature. This programmable printing is expected to become an environmentally friendly technique for scalable invisible optical anti-counterfeiting technology.


Sign in / Sign up

Export Citation Format

Share Document