scholarly journals Distinct mechanisms of spike timing-dependent LTD at vertical and horizontal inputs onto L2/3 pyramidal neurons in mouse barrel cortex

2014 ◽  
Vol 2 (3) ◽  
pp. e00271 ◽  
Author(s):  
Abhishek Banerjee ◽  
Ana González-Rueda ◽  
Cassandra Sampaio-Baptista ◽  
Ole Paulsen ◽  
Antonio Rodríguez-Moreno
2021 ◽  
Vol 118 (35) ◽  
pp. e2107026118 ◽  
Author(s):  
Ricardo Gómez ◽  
Laura E. Maglio ◽  
Alberto J. Gonzalez-Hernandez ◽  
Belinda Rivero-Pérez ◽  
David Bartolomé-Martín ◽  
...  

Postsynaptic N-methyl-D-aspartate receptors (NMDARs) are crucial mediators of synaptic plasticity due to their ability to act as coincidence detectors of presynaptic and postsynaptic neuronal activity. However, NMDARs exist within the molecular context of a variety of postsynaptic signaling proteins, which can fine-tune their function. Here, we describe a form of NMDAR suppression by large-conductance Ca2+- and voltage-gated K+ (BK) channels in the basal dendrites of a subset of barrel cortex layer 5 pyramidal neurons. We show that NMDAR activation increases intracellular Ca2+ in the vicinity of BK channels, thus activating K+ efflux and strong negative feedback inhibition. We further show that neurons exhibiting such NMDAR–BK coupling serve as high-pass filters for incoming synaptic inputs, precluding the induction of spike timing–dependent plasticity. Together, these data suggest that NMDAR-localized BK channels regulate synaptic integration and provide input-specific synaptic diversity to a thalamocortical circuit.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

AbstractThe rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. Layer 5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of layer 5a in the development of the barrel cortex remains unclear. Previously, we found that calretinin is dynamically expressed in layer 5a. In this study, we analyzed calretinin KO mice and found that the dendritic complexity and length of layer 5a pyramidal neurons were significantly decreased after calretinin ablation. The membrane excitability and excitatory synaptic transmission of layer 5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, layer 4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Calretinin KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of layer 5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2021 ◽  
Vol 118 (52) ◽  
pp. e2112212118
Author(s):  
Jiseok Lee ◽  
Joanna Urban-Ciecko ◽  
Eunsol Park ◽  
Mo Zhu ◽  
Stephanie E. Myal ◽  
...  

Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on “engrams” in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP− neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.


2021 ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

Abstract The rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. L5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of L5a in the development of the barrel cortex remains unclear. Previously, we found that Calretinin is dynamically expressed in L5a. In this study, we analyzed Cr KO mice and found that the dendritic complexity and length of L5a pyramidal neurons were significantly decreased after Cr ablation. The membrane excitability and excitatory synaptic transmission of L5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, L4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Cr KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of L5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2013 ◽  
Vol 110 (8) ◽  
pp. 1930-1944 ◽  
Author(s):  
Franck Dubruc ◽  
David Dupret ◽  
Olivier Caillard

In the hippocampus, activity-dependent changes of synaptic transmission and spike-timing coordination are thought to mediate information processing for the purpose of memory formation. Here, we investigated the self-tuning of intrinsic excitability and spiking reliability by CA1 hippocampal pyramidal cells via changes of their GABAergic inhibitory inputs and endocannabinoid (eCB) signaling. Firing patterns of CA1 place cells, when replayed in vitro, induced an eCB-dependent transient reduction of spontaneous GABAergic activity, sharing the main features of depolarization-induced suppression of inhibition (DSI), and conditioned a transient improvement of spike-time precision during consecutive burst discharges. When evaluating the consequences of DSI on excitatory postsynaptic potential (EPSP)-spike coupling, we found that transient reductions of uncorrelated (spontaneous) or correlated (feedforward) inhibition improved EPSP-spike coupling probability. The relationship between EPSP-spike-timing reliability and inhibition was, however, more complex: transient reduction of correlated (feedforward) inhibition disrupted or improved spike-timing reliability according to the initial spike-coupling probability. Thus eCB-mediated tuning of pyramidal cell spike-time precision is governed not only by the initial level of global inhibition, but also by the ratio between spontaneous and feedforward GABAergic activities. These results reveal that eCB-mediated self-tuning of spike timing by the discharge of pyramidal cells can constitute an important contribution to place-cell assemblies and memory formation in the hippocampus.


2003 ◽  
pp. 229-240
Author(s):  
Daniel E. Feldman ◽  
Cara B. Allen ◽  
Tansu Celikel
Keyword(s):  

2020 ◽  
Author(s):  
Yuko Koyanagi ◽  
Yoshiyuki Oi ◽  
Masayuki Kobayashi

Background: The general anesthetic propofol induces frontal alpha rhythm in the cerebral cortex at a dose sufficient to induce loss of consciousness. The authors hypothesized that propofol-induced facilitation of unitary inhibitory postsynaptic currents would result in firing synchrony among postsynaptic pyramidal neurons that receive inhibition from the same presynaptic inhibitory fast-spiking neurons. Methods: Multiple whole cell patch clamp recordings were performed from one fast-spiking neuron and two or three pyramidal neurons with at least two inhibitory connections in rat insular cortical slices. The authors examined how inhibitory inputs from a presynaptic fast-spiking neuron modulate the timing of spontaneous repetitive spike firing among pyramidal neurons before and during 10 μM propofol application. Results: Responding to activation of a fast-spiking neuron with 150-ms intervals, pyramidal cell pairs that received common inhibitory inputs from the presynaptic fast-spiking neuron showed propofol-dependent decreases in average distance from the line of identity, which evaluates the coefficient of variation in spike timing among pyramidal neurons: average distance from the line of identity just after the first activation of fast-spiking neuron was 29.2 ± 24.1 (mean ± SD, absolute value) in control and 19.7 ± 19.2 during propofol application (P < 0.001). Propofol did not change average distance from the line of identity without activating fast-spiking neurons and in pyramidal neuron pairs without common inhibitory inputs from presynaptic fast-spiking neurons. The synchronization index, which reflects the degree of spike synchronization among pyramidal neurons, was increased by propofol from 1.4 ± 0.5 to 2.3 ± 1.5 (absolute value, P = 0.004) and from 1.5 ± 0.5 to 2.2 ± 1.0 (P = 0.030) when a presynaptic fast-spiking neuron was activated at 6.7 and 10 Hz, respectively, but not at 1, 4, and 13.3 Hz. Conclusions: These results suggest that propofol facilitates pyramidal neuron firing synchrony by enhancing inhibitory inputs from fast-spiking neurons. This synchrony of pyramidal neurons may contribute to the alpha rhythm associated with propofol-induced loss of consciousness. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Sign in / Sign up

Export Citation Format

Share Document