Reinforcing mechanisms of carbon nanotubes and high structure carbon black in natural rubber/styrene-butadiene rubber blend prepared by mechanical mixing − effect of bound rubber

2015 ◽  
Vol 64 (11) ◽  
pp. 1627-1638 ◽  
Author(s):  
Morteza Ahmadi ◽  
Akbar Shojaei
2012 ◽  
Vol 19 (01) ◽  
pp. 1250003
Author(s):  
JIAN CHEN ◽  
YONGZHONG JIN ◽  
JINGYU ZHANG ◽  
YAFENG WU ◽  
CHUNCAI MENG

Bound rubber in carbon black (CB) filled rubber (natural rubber (NR) and styrene–butadiene rubber (SBS)) was prepared by the solvent method. The nanomorphology of CB and rubber/CB soluble rubber was observed by atomic force microscope. The results show that high-structure CB DZ13 has a "grape cluster" structure which consists of many original particles with the grain size of about 30–50 nm. Graphitizing process of CB decreases the amount of bound rubber. The NR/DZ13 soluble rubber with island–rim structure has been obtained, where the islands are DZ13 particles and the rims around the islands are occupied by NR film. But when the graphitized DZ13 particles were used as fillers of rubber, we have only observed that some graphitized DZ13 particles were deposited on the surface of the globular-like NR molecular chains, instead of the spreading of NR molecular chains along the surface of DZ13 particles, indicating that graphitized DZ13 has lower chemical activity than ungraphitized DZ13. Especially, we have already observed an interesting unusual bound rubber phenomenon, the blocked "bracelet" structure with the diameter of about 600 nm in which CB particles were blocked in ring-shaped SBS monomer.


2013 ◽  
Vol 86 (4) ◽  
pp. 572-578 ◽  
Author(s):  
Julie Diani ◽  
Yannick Merckel ◽  
Mathias Brieu ◽  
Julien Caillard

ABSTRACT The authors compared the mechanical behavior and, more precisely, the Mullins and the cyclic (post-Mullins) softenings of two filled rubbers. A crystallizing natural rubber and a noncrystallizing styrene–butadiene rubber of similar compositions resulting in similar cross-link densities and filled with 40 phr of N347 carbon-black fillers were tested in cyclic uniaxial tension at room temperature and at 85 °C. Crystallization in filled rubbers is known to increase stress at high stretch, stretch at break, cycle hysteresis, and fatigue lifetime and to reduce crack propagation. In this study, it is shown that crystallization also seems to enhance the Mullins softening (softening at the first cycle) and to favor the apparent cyclic softening. Results reveal that natural rubber shows an amplitude dependence on the cyclic softening, whereas the styrene–butadiene rubber does not. Finally, results demonstrate that studying filled rubber softening cannot help predict lifetime.


Sign in / Sign up

Export Citation Format

Share Document