Crystallization kinetics, aggregated structure and thermal stability of biodegradable poly(ethylene succinate) manipulated by a biocompatible layered metal phosphonate as an efficient nucleator

2021 ◽  
Author(s):  
Chunfeng Jia ◽  
Shanshan Zhou ◽  
Zhanghua Xie ◽  
Lukai Wang ◽  
Yubin Yang ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3053
Author(s):  
Shichang Chen ◽  
Shangdong Xie ◽  
Shanshan Guang ◽  
Jianna Bao ◽  
Xianming Zhang ◽  
...  

Three kinds of modified poly(ethylene terephthalate) (PET) were prepared by solution blending combined with melt post-polycondensation, using 4,4′-thiodiphenol (TDP), 4,4′-oxydiphenol (ODP) and hydroquinone (HQ) as the bisphenols, respectively. The effects of TDP, ODP and HQ on melt post-polycondensation process and crystallization kinetics, melting behaviors, crystallinity and thermal stability of PET/bisphenols complexes were investigated in detail. Excellent chain growth of PET could be achieved by addition of 1 wt% bisphenols, but intrinsic viscosity of modified PET decreased with further bisphenols content. Intermolecular hydrogen bonding between carbonyl groups of PET and hydroxyl groups of bisphenols were verified by Fourier transform infrared spectroscopy. Compare to pure PET, both the crystallization rate and melting temperatures of PET/bisphenols complexes were reduced obviously, suggesting an impeded crystallization and reduced lamellar thickness. Moreover, the structural difference between TDP, ODP and HQ played an important role on crystallization kinetics. It was proposed that the crystallization rate of TDP modified PET was reduced significantly due to the larger amount of rigid benzene ring and larger polarity than that of PET with ODP or HQ. X-ray diffraction results showed that the crystalline structure of PET did not change from the incorporation of bisphenols, but crystallinity of PET decreased with increasing bisphenols content. Thermal stability of modified PET declined slightly, which was hardly affected by the molecular structure of bisphenols.


2008 ◽  
Vol 109 (6) ◽  
pp. 4112-4120 ◽  
Author(s):  
Xuepei Yuan ◽  
Chuncheng Li ◽  
Guohu Guan ◽  
Yaonan Xiao ◽  
Dong Zhang

2016 ◽  
Vol 13 (2) ◽  
pp. 221-234
Author(s):  
Baghdad Science Journal

Different polymers were prepared by condensation polymerization of sebacic anhydride and adipic anhydride with ethylene glycol and poly(ethylene glycol). Their number average molecular weights were determined by end group analysis. Then, they were grafted on the prepared phthalocyaninatocopper(II) compounds with the general formula (NH2)4PcCu(II) having amino groups of 3,3',3'',3'''- or 4,4',4'',4'''- positions. All prepared polymers, compounds, and phthalocyaninatocopper(II)-grafted polymers were characterized by FTIR. The sizing measurements were carried out in 3,3',3'',3'''- (NH2)4PcCu(II) and 4,4',4'',4'''- (NH2)4PcCu(II) compounds with and without grafting polymers. The results showed that the grafting process led to decreasing in particle size and increasing in surface area. The grafting process was reflected positively on the thermal degradation of 3,3',3'',3'''- (NH2)4PcCu(II) and 4,4',4'',4'''- (NH2)4PcCu(II) grafted polymers. They had higher thermal stability accompanied with higher char residue and T50% weight loss with 3,3',3'',3'''-(NH2)4PcCu(II) and their grafted polymers being the best.


Sign in / Sign up

Export Citation Format

Share Document