scholarly journals Erratum: Polymer-based fluoride-selective chemosensor: Synthesis, sensing property, and its use for the design of molecular-scale logic devices

2012 ◽  
Vol 50 (18) ◽  
pp. 3922-3922
Author(s):  
Wei Lu ◽  
Dan Chen ◽  
Han Jiang ◽  
Liming Jiang ◽  
Zhiquan Shen
2011 ◽  
Vol 160 (1) ◽  
pp. 1005-1010 ◽  
Author(s):  
Wei Lu ◽  
Mengyu Zhang ◽  
Keyuan Liu ◽  
Bin Fan ◽  
Zheng Xia ◽  
...  

Author(s):  
J. T. Woodward ◽  
J. A. N. Zasadzinski

The Scanning Tunneling Microscope (STM) offers exciting new ways of imaging surfaces of biological or organic materials with resolution to the sub-molecular scale. Rigid, conductive surfaces can readily be imaged with the STM with atomic resolution. Unfortunately, organic surfaces are neither sufficiently conductive or rigid enough to be examined directly with the STM. At present, nonconductive surfaces can be examined in two ways: 1) Using the AFM, which measures the deflection of a weak spring as it is dragged across the surface, or 2) coating or replicating non-conductive surfaces with metal layers so as to make them conductive, then imaging with the STM. However, we have found that the conventional freeze-fracture technique, while extremely useful for imaging bulk organic materials with STM, must be modified considerably for optimal use in the STM.


2003 ◽  
Vol 771 ◽  
Author(s):  
Adosh Mehta ◽  
Pradeep Kumar ◽  
Jie Zheng ◽  
Robert M. Dickson ◽  
Bobby Sumpter ◽  
...  

AbstractDipole emission pattern imaging experiments on single chains of common conjugated polymers (solubilized poly phenylene vinylenes) isolated by ink-jet printing techniques have revealed surprising uniformity in transition moment orientation perpendicular to the support substrate. In addition to uniform orientation, these species show a number of striking differences in photochemical stability, polarization anisotropy,[1] and spectral signatures[2] with respect to similar (well-studied) molecules dispersed in dilute thin-films. Combined with molecular mechanics simulation, these results point to a structural picture of a folded macromolecule as a highly ordered cylindrical nanostructure whose long-axis (approximately collinear with the conjugation axis) is oriented, by an electrostatic interaction, perpendicular to the coverglass substrate. These results suggest a number of important applications in nanoscale photonics and molecular-scale optoelectronics.


Author(s):  
M.K. Dawood ◽  
C. Chen ◽  
P.K. Tan ◽  
S. James ◽  
P.S. Limin ◽  
...  

Abstract In this work, we present two case studies on the utilization of advanced nanoprobing on 20nm logic devices at contact layer to identify the root cause of scan logic failures. In both cases, conventional failure analysis followed by inspection of passive voltage contrast (PVC) failed to identify any abnormality in the devices. Technology advancement makes identifying failure mechanisms increasingly more challenging using conventional methods of physical failure analysis (PFA). Almost all PFA cases for 20nm technology node devices and beyond require Transmission Electron Microscopy (TEM) analysis. Before TEM analysis can be performed, fault isolation is required to correctly determine the precise failing location. Isolated transistor probing was performed on the suspected logic NMOS and PMOS transistors to identify the failing transistors for TEM analysis. In this paper, nanoprobing was used to isolate the failing transistor of a logic cell. Nanoprobing revealed anomalies between the drain and bulk junction which was found to be due to contact gouging of different severities.


Sign in / Sign up

Export Citation Format

Share Document