photochemical stability
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 25)

H-INDEX

30
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7436
Author(s):  
Marzena Jamrógiewicz ◽  
Marek Józefowicz

Cyclodextrins have found wide application in contemporary chemistry, pharmacy and medicine. Because of their unique properties, cyclodextrins are constantly used in research on solubility or stability improvement, as well as other physicochemical properties of medicinal substances. Indomethacin (IND) is a photolabile molecule that also attracts the interest of researchers due to its therapeutic potential and the need to overcome its problematic photosensitivity. Supramolecular complexes of indomethacin with β-cyclodextrin (CD) are already known, and they show greater stability compared to complexes with other types of cyclodextrins. So far, however, the sensitivity to light of physical mixtures and inclusion complexes in the solid phase has not been studied, and their various stoichiometries have not yet been investigated. Due to this fact, the aim of the present study is to obtain supramolecular systems (inclusion complexes and physical mixtures) of indomethacin with three different amounts of β-cyclodextrin. Assessment of the photochemical stability of indomethacin-β-cyclodextrin systems in the solid state is performed in order to find the best correlation between IND stability and the amount of CD. Comparative analysis of physicochemical degradation for stoichiometry systems [CD:IND] = [1:1], [0.5:1] and [0.1:1] is performed by using ultraviolet spectroscopy, transmission—FTIR, reflection—ATR-FTIR infrared spectroscopy and DSC calorimetry.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3986
Author(s):  
Liliana Rosu ◽  
Cristian-Catalin Gavat ◽  
Dan Rosu ◽  
Cristian-Dragos Varganici ◽  
Fanica Mustata

The paper describes the photochemical stability of a commercial triphenodioxazine dye (Reactive Blue_204) linked onto a cotton fabric. Preliminary studies have shown that as a result of irradiation, the dye and its photodegradation products can pass directly onto the skin under conditions that mimic human perspiration and cause side-effects. The cotton dyed fabric was photo irradiated at different time intervals. Standard methods were employed to evaluate the color strength at various levels of pH, temperature, dyeing contact time, and salt concentration. The influence of UV radiation at different doses (λ > 300 nm) on the structural and color modifications of the dyed cotton fabrics was studied. Structural modifications before and after irradiation were compared by applying FTIR, UV–Vis, and near infrared chemical imaging (NIR–CI) techniques. Color modifications were investigated with the CIELAB system. Color differences significantly increased with the irradiation dose. High irradiation doses caused changes in the dye structure.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1367
Author(s):  
Nazely Diban ◽  
Aleksandra Pacuła ◽  
Izumi Kumakiri ◽  
Carmen Barquín ◽  
Maria J. Rivero ◽  
...  

Immobilization of photocatalysts in porous materials is an approach to significantly minimize the hazards of manipulation and recovery of nanoparticles. Inorganic materials, such as zeolites, are proposed as promising materials for photocatalyst immobilization mainly due to their photochemical stability. In this work, a green synthesis method is proposed to combine TiO2-based photocatalysts with commercial ZY zeolite. Moreover, a preliminary analysis of their performance as photocatalysts for the abatement of organic pollutants in waters was performed. Our results show that the physical mixture of TiO2 and zeolite maintains photocatalytic activity. Meanwhile, composites fabricated by doping TiO2–zeolite Y materials with silver and palladium nanoparticles do not contribute to improving the photocatalytic activity beyond that of TiO2.


Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 318
Author(s):  
Dongmin Kim ◽  
Seungmin Yoo

Quantum dots (QDs) represent the promising new generation of luminophores owing to their size-, composition-, and surface-dependent tunable photoluminescence (PL) and photochemical stability. The development of various QD composites with high PL and good biocompatibility has facilitated the use of aptamer-functionalized QD biosensors for highly sensitive and specific detection of molecules in clinical and environmental settings. In addition to describing the recent advances in aptamer-based QD biosensor technology for the detection of diverse chemicals and biomolecules, this review provides recent examples of sensing strategies based on optical signal enhancement and quenching of QDs. It also discusses potential strategies for the development of biosensors to widen their practical applications across various scientific and technological fields.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1746
Author(s):  
Sébastien Rigaud ◽  
David Mathiron ◽  
Tarek Moufawad ◽  
David Landy ◽  
Florence Djedaini-Pilard ◽  
...  

We studied the effect of several CDs on carvedilol’s solubility and chemical stability in various aqueous media. Our present results show that it is possible to achieve a carvedilol concentration of 5 mg/mL (12.3 mM) in the presence of 5 eq of γCD or RAMEB in an aqueous medium with an acceptable acid pH (between 3.5 and 4.7). Carvedilol formed 1:1 inclusion complexes but those with RAMEB appear to be stronger (K = 317 M−1 at 298 K) than that with γCD (K = 225 M−1 at 298 K). The complexation of carvedilol by RAMEB significantly increased the drug’s photochemical stability in aqueous solution. These results might constitute a first step towards the development of a novel oral formulation of carvedilol.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5062
Author(s):  
Ivan S. Zhidkov ◽  
Azat F. Akbulatov ◽  
Liana N. Inasaridze ◽  
Andrey I. Kukharenko ◽  
Lyubov A. Frolova ◽  
...  

Measurements of XPS survey, core levels (N 1s, O 1s, Pb 4f, I 3d), and valence band (VB) spectra of CH3NH3PbI3 (MAPbI3) hybrid perovskite prepared on different substrates (glass, indium tin oxide (ITO), and TiO2) aged under different light-soaking conditions at room temperature are presented. The results reveal that the photochemical stability of MAPbI3 depends on the type of substrate and gradually decreases when glass is replaced by ITO and TiO2. Also, the degradation upon exposure to visible light is accompanied by the formation of MAI, PbI2, and Pb0 products as shown by XPS core levels spectra. According to XPS O 1s and VB spectra measurements, this degradation process is superimposed on the partial oxidation of lead atoms in ITO/MAPbI3 and TiO2/MAPbI3, for which Pb–O bonds are formed due to the diffusion of the oxygen ions from the substrates. This unexpected interaction leads to additional photochemical degradation.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4463
Author(s):  
Aurélia Malapert ◽  
Emmanuelle Reboul ◽  
Olivier Dangles ◽  
Alain Thiéry ◽  
N’nabinty Sylla ◽  
...  

The extraction of phenolic compounds from olive mill wastes is important, not only to avoid environmental damages, but also because of the intrinsic value of those biophenols, well-known for their high antioxidant potential and health benefits. This study focuses on tyrosol (Tyr) and hydroxytyrosol (HT), two of the main phenolic compounds found in olive mill wastes. A new, simple, and eco-friendly extraction process for the removal of phenolic compounds from aqueous solutions using native β-cyclodextrin (β-CD) in the solid state has been developed. Several β-CD/biophenol molar ratios and biophenol concentrations were investigated, in order to maintain β-CD mostly in the solid state while optimizing the extraction yield and the loading capacity of the sorbent. The extraction efficiencies of Tyr and HT were up to 61%, with a total solid recovery higher than 90% using an initial concentration of 100 mM biophenol and 10 molar equivalents of β-CD. The photochemical stability of the complexes thus obtained was estimated from ∆E*ab curve vs. illumination time. The results obtained showed that the phenols encapsulated into solid β-CD are protected against photodegradation. The powder obtained could be directly developed as a safe-grade food supplement. This simple eco-friendly process could be used for extracting valuable biophenols from olive mill wastewater.


2021 ◽  
Vol 11 (6) ◽  
pp. 2576
Author(s):  
Sebastian Lijewski ◽  
Jiří Tydlitát ◽  
Beata Czarczynska-Goslinska ◽  
Milan Klikar ◽  
Jadwiga Mielcarek ◽  
...  

Tetrapyrazinoporphyrazine with peripheral menthol-thiophenyl substituents was synthesized using Linstead conditions and purified by flash column chromatography. The optimized synthetic and purification procedures allowed us to obtain a new macrocycle with 36% yield. Tetrapyrazinoporphyrazine derivative was characterized by UV–Vis and NMR spectroscopy, as well as MS spectrometry. Complex NMR studies using 1D and 2D NMR techniques allowed the analysis of the bulky menthol-thiophenyl substituted periphery of the new macrocycle. Further, photochemical stability and singlet oxygen quantum yield were determined by indirect method with diphenylisobenzofuran. The new tetrapyrazinoporphyrazine revealed low generation of singlet oxygen with a quantum yield of singlet oxygen formation at 2.3% in dimethylformamide. In turn, the macrocycle under irradiation with visible light presented very high stability with quantum yield for photostability of 9.59 × 10−6 in dimethylformamide, which figures significantly exceed the border for its classification as a stable porphyrinoid (10−4–10−5).


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 809
Author(s):  
Valentina Sabatini ◽  
Laura Pellicano ◽  
Hermes Farina ◽  
Eleonora Pargoletti ◽  
Luisa Annunziata ◽  
...  

Despite the poor photochemical stability of capsules walls, polyacrylate is one of the most successful polymers for microencapsulation. To improve polyacrylate performance, the combined use of different acrylate-based polymers could be exploited. Herein butyl methacrylate (BUMA)-based lattices were obtained via free radical polymerization in water by adding (i) methacrylic acid (MA)/methyl methacrylate (MMA) and (ii) methacrylamide (MAC) respectively, as an aqueous phase in Pickering emulsions, thanks to both the excellent polymer shells’ stability and the high encapsulation efficiency. A series of BUMA_MA_MMA terpolymers with complex macromolecular structures and BUMA_MAC linear copolymers were synthesized and used as dispersing media of an active material. Rate and yield of encapsulation, active substance adsorption onto the polymer wall, capsule morphology, shelf-life and controlled release were investigated. The effectiveness of the prepared BUMA-based microcapsules was demonstrated: BUMA-based terpolymers together with the modified ones (BUMA_MAC) led to slow (within ca. 60 h) and fast (in around 10 h) releasing microcapsules, respectively.


Sign in / Sign up

Export Citation Format

Share Document