scholarly journals A filamentous phage display system for N- linked glycoproteins

2010 ◽  
Vol 19 (10) ◽  
pp. 2006-2013 ◽  
Author(s):  
Eda Çelik ◽  
Adam C. Fisher ◽  
Cassandra Guarino ◽  
Thomas J. Mansell ◽  
Matthew P. DeLisa
Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 868 ◽  
Author(s):  
Khan M. A. Hassan ◽  
John D. Hansen ◽  
Brantley R. Herrin ◽  
Chris T. Amemiya

The variable lymphocyte receptors (VLRs) consist of leucine rich repeats (LRRs) and comprise the humoral antibodies produced by lampreys and hagfishes. The diversity of the molecules is generated by stepwise genomic rearrangements of LRR cassettes dispersed throughout the VLRB locus. Previously, target-specific monovalent VLRB antibodies were isolated from sea lamprey larvae after immunization with model antigens. Further, the cloned VLR cDNAs from activated lamprey leukocytes were transfected into human cell lines or yeast to select best binders. Here, we expand on the overall utility of the VLRB technology by introducing it into a filamentous phage display system. We first tested the efficacy of isolating phage into which known VLRB molecules were cloned after a series of dilutions. These experiments showed that targeted VLRB clones could easily be recovered even after extensive dilutions (1 to 109). We further utilized the system to isolate target-specific “lampribodies” from phage display libraries from immunized animals and observed an amplification of binders with relative high affinities by competitive binding. The lampribodies can be individually purified and ostensibly utilized for applications for which conventional monoclonal antibodies are employed.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 568
Author(s):  
Godwin W. Nchinda ◽  
Nadia Al-Atoom ◽  
Mamie T. Coats ◽  
Jacqueline M. Cameron ◽  
Alain Bopda Waffo

Phage display technology involves the surface genetic engineering of phages to expose desirable proteins or peptides whose gene sequences are packaged within phage genomes, thereby rendering direct linkage between genotype with phenotype feasible. This has resulted in phage display systems becoming invaluable components of directed evolutionary biotechnology. The M13 is a DNA phage display system which dominates this technology and usually involves selected proteins or peptides being displayed through surface engineering of its minor coat proteins. The displayed protein or peptide’s functionality is often highly reduced due to harsh treatment of M13 variants. Recently, we developed a novel phage display system using the coliphage Qβ as a nano-biotechnology platform. The coliphage Qβ is an RNA phage belonging to the family of Leviviridae, a long investigated virus. Qβ phages exist as a quasispecies and possess features making them comparatively more suitable and unique for directed evolutionary biotechnology. As a quasispecies, Qβ benefits from the promiscuity of its RNA dependent RNA polymerase replicase, which lacks proofreading activity, and thereby permits rapid variant generation, mutation, and adaptation. The minor coat protein of Qβ is the readthrough protein, A1. It shares the same initiation codon with the major coat protein and is produced each time the ribosome translates the UGA stop codon of the major coat protein with the of misincorporation of tryptophan. This misincorporation occurs at a low level (1/15). Per convention and definition, A1 is the target for display technology, as this minor coat protein does not play a role in initiating the life cycle of Qβ phage like the pIII of M13. The maturation protein A2 of Qβ initiates the life cycle by binding to the pilus of the F+ host bacteria. The extension of the A1 protein with a foreign peptide probe recognizes and binds to the target freely, while the A2 initiates the infection. This avoids any disturbance of the complex and the necessity for acidic elution and neutralization prior to infection. The combined use of both the A1 and A2 proteins of Qβ in this display system allows for novel bio-panning, in vitro maturation, and evolution. Additionally, methods for large library size construction have been improved with our directed evolutionary phage display system. This novel phage display technology allows 12 copies of a specific desired peptide to be displayed on the exterior surface of Qβ in uniform distribution at the corners of the phage icosahedron. Through the recently optimized subtractive bio-panning strategy, fusion probes containing up to 80 amino acids altogether with linkers, can be displayed for target selection. Thus, combined uniqueness of its genome, structure, and proteins make the Qβ phage a desirable suitable innovation applicable in affinity maturation and directed evolutionary biotechnology. The evolutionary adaptability of the Qβ phage display strategy is still in its infancy. However, it has the potential to evolve functional domains of the desirable proteins, glycoproteins, and lipoproteins, rendering them superior to their natural counterparts.


2013 ◽  
Vol 97 (17) ◽  
pp. 7791-7804 ◽  
Author(s):  
Jessica Nicastro ◽  
Katlyn Sheldon ◽  
Farah A. El-zarkout ◽  
Stanislav Sokolenko ◽  
Marc G. Aucoin ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Dragana Gagic ◽  
Milica Ciric ◽  
Wesley X. Wen ◽  
Filomena Ng ◽  
Jasna Rakonjac

2001 ◽  
Vol 31 (2) ◽  
pp. 185-200 ◽  
Author(s):  
Sanjay Gupta ◽  
Kajal Arora ◽  
Aruna Sampath ◽  
Shubhendu S. Singh ◽  
Amita Gupta ◽  
...  

Cytokine ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 294-295
Author(s):  
Yasuhiro Abe ◽  
Hiroko Shibata ◽  
Tetsuya Nomura ◽  
Hiroyuki Kayamuro ◽  
Yohei Mukai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document