scholarly journals Fluorescence energy transfer measurement of distances between ligand binding sites of tubulin and its implication for protein-protein interaction

1996 ◽  
Vol 5 (10) ◽  
pp. 2029-2036 ◽  
Author(s):  
Anusree Bhattacharya ◽  
Siddhartha Roy ◽  
Bhabatarak Bhattacharyya
2021 ◽  
Vol 22 (5) ◽  
pp. 2323
Author(s):  
Masamitsu Harada ◽  
Jun Nagai ◽  
Riho Kurata ◽  
Xiaofeng Cui ◽  
Takayuki Isagawa ◽  
...  

Repressor element-1 (RE-1) or neural restrictive silencer element (NRSE) bound with a zinc finger transcription repressor, RE-1 silencing transcription factor (REST, also known as neural restrictive silencer factor, NRSF) has been identified as a fundamental repressor element in many genes, including neuronal genes. Genes regulated by REST/NRSF regulate multifaceted neuronal phenotypes, and their defects in the machinery cause neuropathies, disorders of neuron activity), autism and so on. In REST repressions, the N-terminal repressor domain recruits Sin3B via its paired amphipathic helix 1 (PAH1) domain, which plays an important role as a scaffold for histone deacetylase 1 and 2. This machinery has a critical role in maintaining neuronal robustness. In this study, in order to establish protein–protein interaction assays mimicking a binding surface between Sin3B and REST, we selected important amino acids from structural information of the PAH1/REST complex and then tried to reconstitute it using recombinant short peptides derived from PAH1/REST. Initially, we validated whether biotinylated REST interacts with glutathione S-transferase (GST)-tagged PAH1 and whether another PAH1 peptide (PAH1-FLAG) competitively binds with biotinylated REST using surface plasmon resonance (SPR). We observed a direct interaction and competitive binding of two PAH1 peptides. Secondly, in order to establish a high-throughput and high-dynamic-range assay, we utilized an easily performed novel time-resolved fluorescence energy transfer (TR-FRET) assay, and closely monitored this interaction. Finally, we succeeded in establishing a novel high-quality TR-FRET assay and a novel interaction assay based on SPR.


Biochemistry ◽  
1980 ◽  
Vol 19 (6) ◽  
pp. 1182-1192 ◽  
Author(s):  
Robert Luedtke ◽  
Charles S. Owen ◽  
Fred Karush

Sign in / Sign up

Export Citation Format

Share Document