aspartate transcarbamylase
Recently Published Documents


TOTAL DOCUMENTS

428
(FIVE YEARS 6)

H-INDEX

43
(FIVE YEARS 2)

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1125
Author(s):  
Nisha Patwa ◽  
Christopher M. Ranger ◽  
Maximilian Lehenberger ◽  
Peter H. Biedermann ◽  
Michael E. Reding

The fungus-farming ambrosia beetle Xylosandrus germanus (Blandford) uses a pouch-like structure (i.e., mycangium) to transport spores of its nutritional fungal mutualist. Our current study sought to identify reference genes necessary for future transcriptome analyses aimed at characterizing gene expression within the mycangium. Complementary DNA was synthesized using selected tissue types from laboratory-reared and field-collected X. germanus consisting of the whole body, head + thorax, deflated or inflated mycangium + scutellum, inflated mycangium, and thorax + abdomen. Quantitative reverse-transcription PCR reactions were performed using primers for 28S ribosomal RNA (28S rRNA), arginine kinase (AK), carbamoyl-phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase (CAD), mitochondrial cytochrome oxidase 1 (CO1), and elongation factor-1α (EF1α). Reference gene stability was analyzed using GeNorm, NormFinder, BestKeeper, ΔCt, and a comprehensive final ranking by RefFinder. The gene CO1 was identified as the primary reference gene since it was generally ranked in first or second position among the tissue types containing the mycangium. Reference gene AK was identified as a secondary reference gene. In contrast, EF1α was generally ranked in the last or penultimate place. Identification of two stable reference genes will aid in normalizing the expression of target genes for subsequent gene expression studies of X. germanus’ mycangium.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1126 ◽  
Author(s):  
Janine Brandt ◽  
Lisa Wendt ◽  
Bianca S. Bodmer ◽  
Thomas C. Mettenleiter ◽  
Thomas Hoenen

Ebola virus (EBOV) is a zoonotic pathogen causing severe hemorrhagic fevers in humans and non-human primates with high case fatality rates. In recent years, the number and extent of outbreaks has increased, highlighting the importance of better understanding the molecular aspects of EBOV infection and host cell interactions to control this virus more efficiently. Many viruses, including EBOV, have been shown to recruit host proteins for different viral processes. Based on a genome-wide siRNA screen, we recently identified the cellular host factor carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) as being involved in EBOV RNA synthesis. However, mechanistic details of how this host factor plays a role in the EBOV life cycle remain elusive. In this study, we analyzed the functional and molecular interactions between EBOV and CAD. To this end, we used siRNA knockdowns in combination with various reverse genetics-based life cycle modelling systems and additionally performed co-immunoprecipitation and co-immunofluorescence assays to investigate the influence of CAD on individual aspects of the EBOV life cycle and to characterize the interactions of CAD with viral proteins. Following this approach, we could demonstrate that CAD directly interacts with the EBOV nucleoprotein NP, and that NP is sufficient to recruit CAD into inclusion bodies dependent on the glutaminase (GLN) domain of CAD. Further, siRNA knockdown experiments indicated that CAD is important for both viral genome replication and transcription, while substrate rescue experiments showed that the function of CAD in pyrimidine synthesis is indeed required for those processes. Together, this suggests that NP recruits CAD into inclusion bodies via its GLN domain in order to provide pyrimidines for EBOV genome replication and transcription. These results define a novel mechanism by which EBOV hijacks host cell pathways in order to facilitate genome replication and transcription and provide a further basis for the development of host-directed broad-spectrum antivirals.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i17-i17
Author(s):  
Kailin Yang ◽  
Xiuxing Wang ◽  
Qiulian Wu ◽  
Leo Kim ◽  
Andrew Morton ◽  
...  

Abstract Glioblastoma stem cells (GSCs) reprogram glucose metabolism by hijacking high-affinity glucose uptake to survive in a nutritionally dynamic microenvironment. Here, we trace metabolic aberrations in GSCs to link core genetic mutations in glioblastoma to dependency on de novo pyrimidine synthesis. Targeting the pyrimidine synthetic rate-limiting step enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase (CAD) or the critical downstream enzyme dihydroorotate dehydrogenase (DHODH) inhibited GSC survival, self-renewal, and in vivo tumor initiation through the depletion of the pyrimidine nucleotide supply in rodent models. Mutations in EGFR or PTEN generated distinct CAD phosphorylation patterns to activate carbon influx through pyrimidine synthesis. Simultaneous abrogation of tumor-specific driver mutations and DHODH activity with clinically approved inhibitors demonstrated sustained inhibition of metabolic activity of pyrimidine synthesis and GSC tumorigenic capacity in vitro. Higher expression of pyrimidine synthesis genes portends poor prognosis of patients with glioblastoma. Collectively, our results demonstrate a therapeutic approach of precision medicine through targeting the nexus between driver mutations and metabolic reprogramming in cancer stem cells.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 473 ◽  
Author(s):  
Mei-Ling Cheng ◽  
Kun-Yi Chien ◽  
Chien-Hsueh Lai ◽  
Guan-Jie Li ◽  
Jui-Fen Lin ◽  
...  

Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics approach, we demonstrate that EV71-infected Vero cells had significant changes in metabolism. Glutathione and its related metabolites, and several amino acids, such as glutamate and aspartate, changed significantly with the infectious dose of virus. Other pathways, including glycolysis and tricarboxylic acid cycle, were also altered. A change in glutamine/glutamate metabolism is critical to the viral infection. The presence of glutamine in culture medium was associated with an increase in viral replication. Dimethyl α-ketoglutarate treatment partially mimicked the effect of glutamine supplementation. In addition, the immunoblot analysis revealed that the expression of glutamate dehydrogenase (GDH) and trifunctional carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) increased during infection. Knockdown of expression of glutaminase (GLS), GDH and CAD drastically reduced the cytopathic effect (CPE) and viral replication. Furthermore, we found that CAD bound VP1 to promote the de novo pyrimidine synthesis. Our findings suggest that virus may induce metabolic reprogramming of host cells to promote its replication through interactions between viral and host cell proteins.


2019 ◽  
Vol 11 (504) ◽  
pp. eaau4972 ◽  
Author(s):  
Xiuxing Wang ◽  
Kailin Yang ◽  
Qiulian Wu ◽  
Leo J. Y. Kim ◽  
Andrew R. Morton ◽  
...  

Glioblastoma stem cells (GSCs) reprogram glucose metabolism by hijacking high-affinity glucose uptake to survive in a nutritionally dynamic microenvironment. Here, we trace metabolic aberrations in GSCs to link core genetic mutations in glioblastoma to dependency on de novo pyrimidine synthesis. Targeting the pyrimidine synthetic rate-limiting step enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase (CAD) or the critical downstream enzyme dihydroorotate dehydrogenase (DHODH) inhibited GSC survival, self-renewal, and in vivo tumor initiation through the depletion of the pyrimidine nucleotide supply in rodent models. Mutations in EGFR or PTEN generated distinct CAD phosphorylation patterns to activate carbon influx through pyrimidine synthesis. Simultaneous abrogation of tumor-specific driver mutations and DHODH activity with clinically approved inhibitors demonstrated sustained inhibition of metabolic activity of pyrimidine synthesis and GSC tumorigenic capacity in vitro. Higher expression of pyrimidine synthesis genes portends poor prognosis of patients with glioblastoma. Collectively, our results demonstrate a therapeutic approach of precision medicine through targeting the nexus between driver mutations and metabolic reprogramming in cancer stem cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4720-4720 ◽  
Author(s):  
Francesco Parlati ◽  
Mathew Gross ◽  
Julie Janes ◽  
Evan Lewis ◽  
Andy MacKinnon ◽  
...  

Abstract Many hematological tumor cells are dependent on glutamine for growth and survival. Glutamine is the most abundant amino acid in plasma and can be utilized by tumor cells for production of energy and generation of building blocks for the synthesis of macromolecules. Small molecule CB-839 inhibits glutaminase (GLS) activity thereby blocking cellular glutamine utilization resulting in an anti-tumor effect in several hematological tumor types including multiple myeloma (MM), acute lymphocytic leukemia, and several types of non-Hodgkin’s lymphoma [Parlati et al. Blood 2013 122:4226]. Phase 1 clinical trials have been initiated to test the safety, pharmacokinetics, pharmacodynamics, and clinical activity of single agent CB-839 in several hematological malignancies. In anticipation of potential combinations of CB-839 with standard of care agents in future MM clinical trials, we tested the effects of CB-839 in combination with the IMiD, pomalidomide (POM). POM caused complete growth inhibition in MM.1S cells with an EC50 of 16 nM as opposed to partial growth inhibition in RPMI8226 cells, with an EC50 of 130 nM. CB-839 caused complete growth inhibition in MM.1S cells with an EC50 value of 26 nM and produced a cytotoxic effect in RPMI8226 cells with an EC50 of 160 nM. When combined, CB-839 enhanced the anti-proliferative activity of POM in both POM-sensitive MM.1S and POM-resistant RPMI8226 cells resulting in a synergistic anti-tumor effect as demonstrated by combination index values between 0.18-0.62 (mean= 0.36) for the MM.1S and 0.25-0.72 (mean= 0.38) for the RPMI8226 cells. To investigate the mechanism that underlies the observed synergy, RPMI8226 cells were treated for 24 hours and changes in proteins and metabolites were measured by reverse-phase-protein array and LC/MS, respectively. When treated with CB-839 alone, RPMI8226 cells respond by decreasing mTOR pathway signaling proteins (e.g. phospho-mTOR, phospho-p70S6K, phospho-PRAS40, phospho-S6), decreasing the amount of oncogenic proteins (c-Myc and c-Kit), and increasing programmed cell death pathway proteins (e.g. cleaved caspase 7, cleaved PARP), consistent with the cytotoxic activity observed for CB-839. Several of these changes were further enhanced in the presence of POM (e.g. phospho-p70S6K, phospho-S6, phospho-PRAS40, c-kit, c-Myc), however only the enhanced decrease in c-Myc reached statistical significance. Metabolite analysis showed changes with CB-839 consistent with GLS inhibition (e.g. decreases in glutamate, aspartate, succinate and malate and increases in glutamine). On the other hand, single agent POM caused very modest changes in the metabolite profile. When the two agents were combined, metabolite levels were consistent with those observed with single agent CB-839, with the notable exception of carbamoyl-aspartate where lower levels were measured in the combination group in comparison to cells treated with either agent alone. Carbamoyl-aspartate is an intermediate in the pyrimidine biosynthesis pathway and is synthesized by the multi-catalytic enzyme CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase), an enzyme that is regulated by mTOR [Ben-Sahra et al. (2013) Science339: 1323-8]. These observations suggest that CB-839 dampens mTOR signaling and POM may further attenuate this response, possibly contributing to the synergistic anti-tumor effect. These data motivated testing the anti-tumor effect of the combination of CB-839 and POM in mice bearing RPMI8226 xenografts. Oral dosing with single agent CB-839 and POM resulted in tumor growth inhibition (TGI) of 64% and 46%, respectively, whereas the combination of the two agents resulted in a TGI of 97%. Efficacious doses of CB-839 and POM alone or in combination were well tolerated with no effect on animal body weight. These promising results indicate that GLS inhibition with CB-839 in combination with POM may provide therapeutic benefit in MM and provide motivation for future clinical studies. Disclosures Parlati: Calithera Biosciences: Employment, Equity Ownership. Gross:Calithera Biosciences: Employment, Equity Ownership. Janes:Calithera Biosciences: Employment, Equity Ownership. Lewis:Calithera Biosciences: Employment, Equity Ownership. MacKinnon:Calithera Biosciences: Employment, Equity Ownership. Rodriguez:Calithera Biosciences: Employment, Equity Ownership. Shwonek:Calithera Biosciences: Employment, Equity Ownership. Bennett:Calithera Biosciences: Employment, Equity Ownership.


2014 ◽  
Vol 244 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Baptiste Coxam ◽  
Christine Neyt ◽  
Daniela R. Grassini ◽  
Ludovic Le Guen ◽  
Kelly A. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document