AlphaFold2 predicts the inward‐facing conformation of the multidrug transporter LmrP

Author(s):  
Diego Alamo ◽  
Cédric Govaerts ◽  
Hassane S. Mchaourab
Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1115-1123 ◽  
Author(s):  
John R Halsall ◽  
Michael J Milner ◽  
Lorna A Casselton

Abstract The B mating type locus of the basidiomycete Coprinus cinereus encodes a large family of lipopeptide pheromones and their seven transmembrane domain receptors. Here we show that the B42 locus, like the previously described B6 locus, derives its unique specificity from nine multiallelic genes that are organized into three subgroups each comprising a receptor and two pheromone genes. We show that the three genes within each group are kept together as a functional unit by being embedded in an allele-specific DNA sequence. Using a combination of sequence analysis, Southern blotting, and DNA-mediated transformation with cloned genes, we demonstrate that different B loci may share alleles of one or two groups of genes. This is consistent with the prediction that the three subgroups of genes are functionally redundant and that it is the different combinations of their alleles that generate the multiple B mating specificities found in nature. The B42 locus was found to contain an additional gene, mfs1, that encodes a putative multidrug transporter belonging to the major facilitator family. In strains with other B mating specificities, this gene, whose functional significance was not established, lies in a region of shared homology flanking the B locus.


Biochemistry ◽  
1990 ◽  
Vol 29 (9) ◽  
pp. 2295-2303 ◽  
Author(s):  
Ursula A. Germann ◽  
Mark C. Willingham ◽  
Ira Pastan ◽  
Michael M. Gottesman

2020 ◽  
Vol 8 (3) ◽  
pp. 344 ◽  
Author(s):  
Urška Ribič ◽  
Jernej Jakše ◽  
Nataša Toplak ◽  
Simon Koren ◽  
Minka Kovač ◽  
...  

Staphylococcus epidermidis cleanroom strains are often exposed to sub-inhibitory concentrations of disinfectants, including didecyldimethylammonium chloride (DDAC). Consequently, they can adapt or even become tolerant to them. RNA-sequencing was used to investigate adaptation and tolerance mechanisms of S. epidermidis cleanroom strains (SE11, SE18), with S. epidermidis SE11Ad adapted and S. epidermidis SE18To tolerant to DDAC. Adaptation to DDAC was identified with up-regulation of genes mainly involved in transport (thioredoxin reductase [pstS], the arsenic efflux pump [gene ID, SE0334], sugar phosphate antiporter [uhpT]), while down-regulation was seen for the Agr system (agrA, arC, agrD, psm, SE1543), for enhanced biofilm formation. Tolerance to DDAC revealed the up-regulation of genes associated with transporters (L-cysteine transport [tcyB]; uracil permease [SE0875]; multidrug transporter [lmrP]; arsenic efflux pump [arsB]); the down-regulation of genes involved in amino-acid biosynthesis (lysine [dapE]; histidine [hisA]; methionine [metC]), and an enzyme involved in peptidoglycan, and therefore cell wall modifications (alanine racemase [SE1079]). We show for the first time the differentially expressed genes in DDAC-adapted and DDAC-tolerant S. epidermidis strains, which highlight the complexity of the responses through the involvement of different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document