Bulk modulus anomaly of FeNi and FePt invar alloys

1979 ◽  
Vol 53 (2) ◽  
pp. K147-K151 ◽  
Author(s):  
E. Török ◽  
G. Hausch
Keyword(s):  
1981 ◽  
Vol 50 (9) ◽  
pp. 2917-2923 ◽  
Author(s):  
Gendo Oomi ◽  
Nobuo Mōri
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Bo Zhang ◽  
Jianjun Gu ◽  
Xiaoxiao Zhang ◽  
Bin Yang ◽  
Zheng Wang ◽  
...  

Purpose. To explore the probability and variation in biomechanical measurements of rabbit cornea by a modified Scheimpflug device.Methods. A modified Scheimpflug device was developed by imaging anterior segment of the model imitating the intact eye at various posterior pressures. The eight isolated rabbit corneas were mounted on the Barron artificial chamber and images of the anterior segment were taken at posterior pressures of 15, 30, 45, 60, and 75 mmHg by the device. The repeatability and reliability of the parameters including CCT, ACD, ACV, and CV were evaluated at each posterior pressure. All the variations of the parameters at the different posterior pressures were calculated.Results. All parameters showed good intraobserver reliability (Cronbach’s alpha; intraclass correlation coefficient,α, ICC > 0.96) and repeatability in the modified Scheimpflug device. With the increase of posterior pressures, the ratio of CCT decreased linearly and the bulk modulus gradually reduced to a platform. The increase of ACD was almost linear with the posterior pressures elevated.Conclusions. The modified Scheimpflug device was a valuable tool to investigate the biomechanics of the cornea. The posterior pressure 15–75 mmHg range produced small viscoelastic deformations and nearly linear pressure-deformation response in the rabbit cornea.


2021 ◽  
Vol 9 (10) ◽  
pp. 6567-6574
Author(s):  
B. Sherwood ◽  
C. J. Ridley ◽  
C. L. Bull ◽  
S. Fop ◽  
J. M. S. Skakle ◽  
...  

The pressure response of Ba3MoNbO8.5 reveals a structural transformation, which acts to increase the energy barriers to migration along all available transport pathways, and an exceptionally low bulk modulus.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
A. S. J. Méndez ◽  
F. Trybel ◽  
R. J. Husband ◽  
G. Steinle-Neumann ◽  
H.-P. Liermann ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
O. N. Senkov ◽  
D. B. Miracle

AbstractTwo classical criteria, by Pugh and Pettifor, have been widely used by metallurgists to predict whether a material will be brittle or ductile. A phenomenological correlation by Pugh between metal brittleness and its shear modulus to bulk modulus ratio was established more than 60 years ago. Nearly four decades later Pettifor conducted a quantum mechanical analysis of bond hybridization in a series of intermetallics and derived a separate ductility criterion based on the difference between two single-crystal elastic constants, C12–C44. In this paper, we discover the link between these two criteria and show that they are identical for materials with cubic crystal structures.


Sign in / Sign up

Export Citation Format

Share Document