Correlations between Raman frequency shifts and the thermodynamic quantities close to the melting point in D2O ice

2005 ◽  
Vol 242 (14) ◽  
pp. 2803-2812 ◽  
Author(s):  
H. Karacali ◽  
H. Yurtseven
2013 ◽  
Vol 32 (4) ◽  
pp. 383-389 ◽  
Author(s):  
Hamit Yurtseven ◽  
Özge Akay

AbstractThe thermodynamic quantities of the isothermal compressibility, thermal expansion and the specific heat are calculated here as a function of pressure by using the observed Raman frequencies of the lattice modes and vibrons in the η phase of solid nitrogen. The Pippard relations and their spectroscopic modifications are constructed, and the slope dP/dT is deduced from the Raman frequency shifts in this phase of N2. It is shown that the thermodynamic quantities can be predicted from the Raman frequency shifts, in particular, in the η phase of solid nitrogen.


2013 ◽  
Vol 27 (09) ◽  
pp. 1350035 ◽  
Author(s):  
H. YURTSEVEN ◽  
S. SARITAŞ

The pressure dependence of the Raman frequencies of the internal modes is analyzed (T = 300 K ) for the phases i and θ of solid nitrogen using the experimental data from the literature. Through the mode Grüneisen parameter, the isothermal compressibility κT, thermal expansion αp and the specific heat Cp–Cv are calculated as a function of pressure using the Raman data in these phases. We obtain that the αp varies linearly with the (1/υ)(∂υ/∂P)T and also that the Cp–Cv varies linearly with the αp for N 2. Our results show that by means of the analysis given here, the αp, κT and Cp–Cv can be predicted from the Raman frequency shifts for the i and θ phases of solid nitrogen.


Sign in / Sign up

Export Citation Format

Share Document