Impact of thickness and poling condition on dielectric and piezoelectric properties of Pb(In 0.5 Nb 0.5 )O 3 ‐PbTiO 3 ferroelectric crystals

Author(s):  
Junjie Xiong ◽  
Zujian Wang ◽  
Xiaoming Yang ◽  
Rongbing Su ◽  
Xifa Long ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12826-12832
Author(s):  
Junjie Xiong ◽  
Zujian Wang ◽  
Xiaoming Yang ◽  
Rongbing Su ◽  
Xifa Long ◽  
...  

The ε33T/ε0 and d33 values of ACP 0.66PIN–0.34PT crystals are shown to be 3070 and 1400 pC N−1, respectively, which are 14% and 18% larger than those of a DCP sample, owing to the enhancement of both intrinsic and extrinsic contributions.


2015 ◽  
Vol 621 ◽  
pp. 256-262 ◽  
Author(s):  
R. Machado ◽  
A. Di Loreto ◽  
A. Frattini ◽  
M. Sepliarsky ◽  
O. de Sanctis ◽  
...  

2009 ◽  
Vol 66 ◽  
pp. 238-241
Author(s):  
Xiao Fang Liu ◽  
Hua Jun Sun ◽  
Ming Wei ◽  
C.X. Xiong

The Nb modified PZT piezoelectric ceramic was synthesized by conventional solid-state reaction, where all of different particle sizes had the same physical properties. 0-3 modified PZT/PVDF composites were formed by hot-pressing method. The particle size effect of modified PZT on the relative dielectric and piezoelectric properties of the composites were investigated. The relative dielectric constant εr, piezoelectric constant d33 and electromechanical coupling factor kp were higher in the composite containing larger PZT particle size. The microstructures of the composites were studied by SEM, the composite with the finer PZT particle size was more homogeneous, but larger particle size was easy to be contacted. In a high volume fraction particle-loaded composite, some piezoelectric ceramic particle appeared to be in contact, as in a 1-3 connectivity pattern. The larger particle size of modified PZT itself could be seen as the grain of modified PZT contact in a 1-3 connectivity pattern and easy to be contacted each other compared to the finer particle size in the composites, thus reducing the resistance of the composites and the poling process became effective, which led to higher properties. The optimal particle size of PZT is about 100μm, the Nb modified PZT/PVDF (volume fraction 70/30) composite show higher dielectric and piezoelectric properties than the others, εr=156.6, d33=69pC/N and kp=0.358.


Sign in / Sign up

Export Citation Format

Share Document