scholarly journals Stacking Fault Manifolds and Structural Configurations of Partial Dislocations in InGaN Epilayers

2021 ◽  
Vol 258 (11) ◽  
pp. 2170053
Author(s):  
Isaak G. Vasileiadis ◽  
Imad Belabbas ◽  
Calliope Bazioti ◽  
Julita Smalc-Koziorοwska ◽  
Philomela Komninou ◽  
...  
Author(s):  
Isaak G. Vasileiadis ◽  
Imad Belabbas ◽  
Calliope Bazioti ◽  
Julita Smalc-Koziorοwska ◽  
Philomela Komninou ◽  
...  

Author(s):  
K. Z. Botros ◽  
S. S. Sheinin

The main features of weak beam images of dislocations were first described by Cockayne et al. using calculations of intensity profiles based on the kinematical and two beam dynamical theories. The feature of weak beam images which is of particular interest in this investigation is that intensity profiles exhibit a sharp peak located at a position very close to the position of the dislocation in the crystal. This property of weak beam images of dislocations has an important application in the determination of stacking fault energy of crystals. This can easily be done since the separation of the partial dislocations bounding a stacking fault ribbon can be measured with high precision, assuming of course that the weak beam relationship between the positions of the image and the dislocation is valid. In order to carry out measurements such as these in practice the specimen must be tilted to "good" weak beam diffraction conditions, which implies utilizing high values of the deviation parameter Sg.


Further experiments by transmission electron microscopy on thin sections of stainless steel deformed by small amounts have enabled extended dislocations to be observed directly. The arrangement and motion of whole and partial dislocations have been followed in detail. Many of the dislocations are found to have piled up against grain boundaries. Other observations include the formation of wide stacking faults, the interaction of dislocations with twin boundaries, and the formation of dislocations at thin edges of the foils. An estimate is made of the stacking-fault energy from a consideration of the stresses present, and the properties of the dislocations are found to be in agreement with those expected from a metal of low stacking-fault energy.


2004 ◽  
Vol 815 ◽  
Author(s):  
R. E. Stahlbush ◽  
M. E. Twigg ◽  
J. J. Sumakeris ◽  
K. G. Irvine ◽  
P. A. Losee

AbstractThe early development of stacking faults in SiC PiN diodes fabricated on 8° off c-axis 4H wafers has been studied. The 150μm drift region and p-n junction were epitaxially grown. The initial evolution of the stacking faults was examined by low injection electroluminescence using current-time product steps as low as 0.05 coul/cm2. The properties of the dislocations present before electrical stressing were determined based on previously observed differences of Si-core and C-core partial dislocations and the patterns of stacking fault expansion. The initial stacking fault expansion often forms a chain of equilateral triangles and at higher currents and/or longer times these triangles coalesce. All of the faulting examined in this paper originated between 10 and 40 μm below the SiC surface. The expansion rate of the bounding partial dislocations is very sensitive to the partials' line directions, their core types and the density of kinks. From these patterns it is concluded that the stacking faults originate from edge-like basal plane dislocations that have Burgers vectors either parallel or anti-parallel to the off-cut direction. Evidence for dislocation conversions between basal-plane and threading throughout the epitaxial drift region is also presented.


2015 ◽  
Vol 48 (4) ◽  
pp. 1000-1010 ◽  
Author(s):  
Sondes Bauer ◽  
Sergey Lazarev ◽  
Martin Bauer ◽  
Tobias Meisch ◽  
Marian Caliebe ◽  
...  

A rapid nondestructive defect assessment and quantification method based on X-ray diffraction and three-dimensional reciprocal-space mapping has been established. A fast read-out two-dimensional detector with a high dynamic range of 20 bits, in combination with a powerful data analysis software package, is set up to provide fast feedback to crystal growers with the goal of supporting the development of reduced defect density GaN growth techniques. This would contribute strongly to the improvement of the crystal quality of epitaxial structures and therefore of optoelectronic properties. The method of normalized three-dimensional reciprocal-space mapping is found to be a reliable tool which shows clearly the influence of the parameters of the metal–organic vapour phase epitaxial and hydride vapour phase epitaxial (HVPE) growth methods on the extent of the diffuse scattering streak. This method enables determination of the basal stacking faults and an exploration of the presence of other types of defect such as partial dislocations and prismatic stacking faults. Three-dimensional reciprocal-space mapping is specifically used in the manuscript to determine basal stacking faults quantitatively and to discuss the presence of partial dislocations. This newly developed method has been applied to semipolar GaN structures grown on patterned sapphire substrates (PSSs). The fitting of the diffuse scattering intensity profiles along the stacking fault streaks with simulations based on a Monte Carlo approach has delivered an accurate determination of the basal plane stacking fault density. Three-dimensional reciprocal-space mapping is shown to be a method sensitive to the influence of crystallographic surface orientation on basal stacking fault densities during investigation of semipolar (11{\overline 2}2) GaN grown on anr-plane (1{\overline 1}02) PSS and semipolar (10{\overline 1}1) GaN grown on ann-plane (11{\overline 2}3) PSS. Moreover, the influence of HVPE overgrowth at reduced temperature on the quality of semipolar (11{\overline 2}2) GaN has been studied.


2007 ◽  
Vol 561-565 ◽  
pp. 2465-2468
Author(s):  
Atsutomo Nakamura ◽  
E. Tochigi ◽  
Naoya Shibata ◽  
Takahisa Yamamoto ◽  
Yuichi Ikuhara

Structure and configuration of boundary dislocations on the low angle tilt grain boundaries in alumina were considered based on the ideas that the boundary is composed of regularly arrayed edge dislocations and that the dislocations could dissociate into partial dislocations as well as glide dislocations in bulk. Moreover, the structure of the dissociated boundary dislocations were evaluated by the calculations based on an elastic theory. The calculations indicated that the largeness of the stacking fault region between partial dislocations formed by the dissociation will decrease with increasing tilt angles. It can be said that the idea and calculations used here will be powerful in considering the dislocation structure of low angle tilt grain boundaries that are not or are difficult to be identified.


Author(s):  
P. C. J. Gallagher

Stacking faults are an important substructural feature of many materials, and have been widely studied in layer structures (e.g. talc) and in crystals with hexagonal and face centered cubic structure. Particular emphasis has been placed on the study of faulted defects in f.c.c. alloys, since the width of the band of fault between dissociated partial dislocations has a major influence on mechanical properties.Under conditions of elastic equilibrium the degree of dissociation reflects the balance of the repulsive force between the partials bounding the fault, and the attractive force associated with the need to minimize the energy arising from the misfits in stacking sequence. Examples of two of the faulted defects which can be used to determine this stacking fault energy, Υ, are shown in Fig. 1. Intrinsically faulted extended nodes (as at A) have been widely used to determine Υ, and examples will be shown in several Cu and Ag base alloys of differing stacking fault energy. The defect at B contains both extrinsic and intrinsic faulting, and readily enables determination of both extrinsic and intrinsic fault energies.


Sign in / Sign up

Export Citation Format

Share Document