The effect of phonon-electron thermal decoupling on the low-T thermal conductivity data of cuprates

2006 ◽  
Vol 3 (9) ◽  
pp. 3144-3147
Author(s):  
M. F. Smith
2019 ◽  
Vol 133 ◽  
pp. 135-142 ◽  
Author(s):  
Sofia K. Mylona ◽  
Thomas J. Hughes ◽  
Amina A. Saeed ◽  
Darren Rowland ◽  
Juwoon Park ◽  
...  

2010 ◽  
Vol 1 (4) ◽  
pp. 269-322 ◽  
Author(s):  
Ji-Hwan Lee ◽  
Seung-Hyun Lee ◽  
Chul Choi ◽  
Seok Jang ◽  
Stephen Choi

2006 ◽  
Vol 77 (4) ◽  
pp. 044904 ◽  
Author(s):  
William F. Waite ◽  
Lauren Y. Gilbert ◽  
William J. Winters ◽  
David H. Mason

2012 ◽  
Vol 4 (3) ◽  
Author(s):  
Akpabio Thompson ◽  
George Jimmy ◽  
Udofia Michael

AbstractIn this study, specific development of empirical models for estimation of laboratory thermal conductivities from wire line log thermal conductivity within the ambience of locally oriented wells located in the Niger Delta have been established. The laboratory thermal conductivity is characterised with high fidelity compared to wire line log thermal conductivity whose values vary as the dependence of lithology of the subsurface geomaterials, well effects, as well as the effects of the limited bed thickness of the adjacent lithological units of the Niger Delta where the study was stationed. The generalised equation kleff = 0.709 kweff + 0.188 is an empirically estimated model based on site variables (porosity, permeability and temperature) and constants (cementation factor, formation factor and tortuosity) of the locally oriented wells in the Niger Delta. It can be used to set bounds on the unstable wire line log thermal conductivity values within the 1-2.5 km depths where the oil-rich geomaterials in the Niger Delta are usually found. Equations have been established which show inter-convertibility between laboratory and wire line log thermal conductivity. These equations are considered useful in converting the available wire line log thermal conductivity data of nearby wells in the area to the usually desired and stable laboratory thermal conductivity. Various diagrams in 2-D and 3-D have been established to show the distribution of the parameters considered, and this could help the operating companies in the zone to predict the density of oil.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Jacob Eapen ◽  
Roberto Rusconi ◽  
Roberto Piazza ◽  
Sidney Yip

We show that a large set of nanofluid thermal conductivity data falls within the upper and lower Maxwell bounds for homogeneous systems. This indicates that the thermal conductivity of nanofluids is largely dependent on whether the nanoparticles stay dispersed in the base fluid, form large aggregates, or assume a percolating fractal configuration. The experimental data, which are strikingly analogous to those in most solid composites and liquid mixtures, provide strong evidence for the classical nature of thermal conduction in nanofluids.


2015 ◽  
Vol 1735 ◽  
Author(s):  
M. Ikeda ◽  
X. Yan ◽  
L. Prochaska ◽  
G. Lientschnig ◽  
R. Svagera ◽  
...  

ABSTRACTConcerning a materials ability to convert heat to electrical energy, the electrical power factor S2/ρ as well as the thermal conductivity at elevated temperatures are of special interest. Since Flash experiments measure the thermal diffusivity and standard steady-state heat-flow experiments are inaccurate at elevated temperatures due to radiation errors inherent to this technique, direct and accurate thermal conductivity data on type-I clathrate single crystals at elevated temperatures are scarce in literature. Here we report 3ω thermal conductivity data on single crystalline Ba8Cu5.09Ge40.91 (BCG), La1.23Ba6.99Au5.91Si39.87, and Ce1.06Ba6.91Au5.56Si40.47 in the temperature range between 80 and 330 K, and specific heat data on BCG between 2 and 300 K. The comparison of our room temperature phonon thermal conductivity data (κph) to results on transition metal (TM) free type-I clathrates in terms of the guest free space (Rfree) suggests a stronger dependence of κph on Rfree for the clathrates containing TM elements.


Sign in / Sign up

Export Citation Format

Share Document