scholarly journals A dose‐finding design for dual‐agent trials with patient‐specific doses for one agent with application to an opiate detoxification trial

2021 ◽  
Author(s):  
Pavel Mozgunov ◽  
Suzie Cro ◽  
Anne Lingford‐Hughes ◽  
Louise M. Paterson ◽  
Thomas Jaki
Biometrics ◽  
2008 ◽  
Vol 64 (4) ◽  
pp. 1126-1136 ◽  
Author(s):  
Peter F. Thall ◽  
Hoang Q. Nguyen ◽  
Elihu H. Estey

2018 ◽  
pp. 1-19 ◽  
Author(s):  
Jiaying Lyu ◽  
Emily Curran ◽  
Yuan Ji

Purpose Statistical designs for traditional phase I dose-finding trials consider dose-limiting toxicity in the first cycle of treatment. In reality, patients often go through multiple cycles of treatment and may experience toxicity events in more than one cycle. Therefore, it is desirable to identify the maximum tolerated sequence of three doses across three cycles of treatment. Methods Motivated by a three-cycle dose-finding clinical trial for a rare cancer with a JAK inhibitor, we proposed and implemented a simple Bayesian adaptive dose-cycle finding (BaSyc) design that allows intercycle and intrapatient dose modification. Because of the patient-specific dosing strategy over cycles, the BaSyc design is suited as a method in precision oncology. Results BaSyc is simple and transparent because its algorithm can be summarized as two tabulated decision rules before the trial starts, allowing physicians to visually examine these rules. In addition, BaSyc employs a time-saving enrollment scheme that speeds up the trial. Extensive simulation studies show that BaSyc has desirable operating characteristics in identifying the maximum tolerated sequence. Conclusion The BaSyc design provides a first-of-kind multicycle approach for dose finding and will likely lead to better and safer patient care and drug development.


2018 ◽  
Vol 45 (14) ◽  
pp. 2607-2618
Author(s):  
Md. Moniruzzaman Moni ◽  
M. Iftakhar Alam

2005 ◽  
Vol 11 (15) ◽  
pp. 5342-5346 ◽  
Author(s):  
André Rogatko ◽  
James S. Babb ◽  
Mourad Tighiouart ◽  
Fadlo R. Khuri ◽  
Gary Hudes

2013 ◽  
Vol 61 (S 01) ◽  
Author(s):  
M Kaur ◽  
N Sprunk ◽  
U Schreiber ◽  
R Lange ◽  
J Weipert ◽  
...  

2007 ◽  
Vol 46 (01) ◽  
pp. 38-42 ◽  
Author(s):  
V. Schulz ◽  
I. Nickel ◽  
A. Nömayr ◽  
A. H. Vija ◽  
C. Hocke ◽  
...  

SummaryThe aim of this study was to determine the clinical relevance of compensating SPECT data for patient specific attenuation by the use of CT data simultaneously acquired with SPECT/CT when analyzing the skeletal uptake of polyphosphonates (DPD). Furthermore, the influence of misregistration between SPECT and CT data on uptake ratios was investigated. Methods: Thirty-six data sets from bone SPECTs performed on a hybrid SPECT/CT system were retrospectively analyzed. Using regions of interest (ROIs), raw counts were determined in the fifth lumbar vertebral body, its facet joints, both anterior iliacal spinae, and of the whole transversal slice. ROI measurements were performed in uncorrected (NAC) and attenuation-corrected (AC) images. Furthermore, the ROI measurements were also performed in AC scans in which SPECT and CT images had been misaligned by 1 cm in one dimension beforehand (ACX, ACY, ACZ). Results: After AC, DPD uptake ratios differed significantly from the NAC values in all regions studied ranging from 32% for the left facet joint to 39% for the vertebral body. AC using misaligned pairs of patient data sets led to a significant change of whole-slice uptake ratios whose differences ranged from 3,5 to 25%. For ACX, the average left-to-right ratio of the facet joints was by 8% and for the superior iliacal spines by 31% lower than the values determined for the matched images (p <0.05). Conclusions: AC significantly affects DPD uptake ratios. Furthermore, misalignment between SPECT and CT may introduce significant errors in quantification, potentially also affecting leftto- right ratios. Therefore, at clinical evaluation of attenuation- corrected scans special attention should be given to possible misalignments between SPECT and CT.


1989 ◽  
Vol 28 (02) ◽  
pp. 69-77 ◽  
Author(s):  
R. Haux

Abstract:Expert systems in medicine are frequently restricted to assisting the physician to derive a patient-specific diagnosis and therapy proposal. In many cases, however, there is a clinical need to use these patient data for other purposes as well. The intention of this paper is to show how and to what extent patient data in expert systems can additionally be used to create clinical registries and for statistical data analysis. At first, the pitfalls of goal-oriented mechanisms for the multiple usability of data are shown by means of an example. Then a data acquisition and inference mechanism is proposed, which includes a procedure for controlling selection bias, the so-called knowledge-based attribute selection. The functional view and the architectural view of expert systems suitable for the multiple usability of patient data is outlined in general and then by means of an application example. Finally, the ideas presented are discussed and compared with related approaches.


Sign in / Sign up

Export Citation Format

Share Document