Ensemble simulations to investigate the impact of large-scale urbanization on precipitation in the lower reaches of Yangtze River Valley, China

2013 ◽  
Vol 140 (678) ◽  
pp. 258-266 ◽  
Author(s):  
Hongchao Wan ◽  
Zhong Zhong
Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 302
Author(s):  
Li Wu ◽  
Shuguang Lu ◽  
Cheng Zhu ◽  
Chunmei Ma ◽  
Xiaoling Sun ◽  
...  

The Yangtze River Valley is an important economic region and one of the cradles of human civilization. It is also the site of frequent floods, droughts, and other natural disasters. Conducting Holocene environmental archaeology research in this region is of great importance when studying the evolution of the relationship between humans and the environment and the interactive effects humans had on the environment from 10.0 to 3.0 ka BP, for which no written records exist. This review provides a comprehensive summary of materials that have been published over the past several decades concerning Holocene environmental archaeology in the Yangtze River Valley, to further understand large-scale regional Holocene environmental and cultural interaction within this area. The results show that: 1) in recent years, Holocene envi-ronmental archaeology research in the Yangtze River Valley has primarily taken paleoflood and sea-level change stratigraphical events to be the foundational threads for study. This began with research on the spatiotemporal distribution of archaeological sites, typical archaeological site stratigraphy, and research on background features concerning environmental evolution recorded by the regional natural sedimentary strata. 2) Significant progress has been made at the upper, middle, and lower reaches of the Yangtze River, indicating that Holocene environmental ar-chaeology research along the Yangtze River Valley is deepening and broadening. 3) Dramatic changes to Neolithic cultures that occurred approximately 4.0 ka BP were influenced by climate change and associated consequences, although the impacts differed on the various Neolithic cultures in the Yangtze River Valley. Local topography, regional climate, and varying survival strategies may have contributed to these differences. 4) Newly-published research pays particular attention to the sedimentary records of the past with resolutions as high as one year to several months, the degree to which humans altered the quality of their natural environment, and human adjustments to settlement and subsistence practices during periods of Holocene climate change. The application of technologies such as remote sensing, geographic information systems (GIS), and molecular biological analysis are also gradually being extended into the research field of Holocene environmental archaeology in the Yangtze River Valley.


2017 ◽  
Vol 18 (4) ◽  
pp. 1071-1080 ◽  
Author(s):  
Wenguang Wei ◽  
Zhongwei Yan ◽  
P. D. Jones

Abstract The potential predictability of seasonal extreme precipitation accumulation (SEPA) across mainland China is evaluated, based on daily precipitation observations during 1960–2013 at 675 stations. The potential predictability value (PPV) of SEPA is calculated for each station by decomposing the observed SEPA variance into a part associated with stochastic daily rainfall variability and another part associated with longer-time-scale climate processes. A Markov chain model is constructed for each station and a Monte Carlo simulation is applied to estimate the stochastic part of the variance. The results suggest that there are more potentially predictable regions for summer than for the other seasons, especially over southern China, the Yangtze River valley, the north China plain, and northwestern China. There are also regions of large PPVs in southern China for autumn and winter and in northwestern China for spring. The SEPA series for the regions of large PPVs are deemed not entirely stochastic, either with long-term trends (e.g., increasing trends in inland northwestern China) or significant correlation with well-known large-scale climate processes (e.g., East Asian winter monsoon for southern China in winter and El Niño for the Yangtze River valley in summer). This fact not only verifies the claim that the regions have potential predictability but also facilitates predictive studies of the regional extreme precipitation associated with large-scale climate processes.


Ecosphere ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. e01967 ◽  
Author(s):  
Ming-Hong Lu ◽  
Xiao Chen ◽  
Wan-Cai Liu ◽  
Feng Zhu ◽  
Ka-Sing Lim ◽  
...  

2021 ◽  
Vol 33 (8) ◽  
pp. 101599
Author(s):  
Muhammad Ishaq Asif Rehmani ◽  
Chengqiang Ding ◽  
Ganghua Li ◽  
Syed Tahir Ata-Ul-Karim ◽  
Adel Hadifa ◽  
...  

2016 ◽  
Vol 11 (9) ◽  
pp. 094002 ◽  
Author(s):  
Chaofan Li ◽  
Adam A Scaife ◽  
Riyu Lu ◽  
Alberto Arribas ◽  
Anca Brookshaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document