Soil Vapor Extraction and Chemical Oxidation to Remediate Chlorinated Solvents in Fractured Crystalline Bedrock: Pilot Study Results and Lessons Learned

2002 ◽  
Vol 12 (2) ◽  
pp. 35-50 ◽  
Author(s):  
H. Jean Cho ◽  
R. Joseph Fiacco ◽  
Matthew H. Daly
2020 ◽  
pp. 409-410
Author(s):  
A.G. Christensen ◽  
E.V. Fischer ◽  
H.H. Nielsen ◽  
T. Nygaard ◽  
H. Østergaard ◽  
...  

Author(s):  
Ryo S. Amano ◽  
Jose Martinez Lucci ◽  
Krishna S. Guntur

Heated Soil Vapor Extraction (HSVE) is a technology that has been used successfully to clean up subsurface soils at sites containing chlorinated solvents and petroleum hydrocarbons. The costs have been extremely high due to the large amount of energy required to volatilize high molecular weight polycyclic aromatic hydrocarbon (PAH) compounds present in the soil matrix. One remediation contractor states that hydrocarbons are oxidized in situ by achieving temperatures in the >1000 F range near the heaters [1]. A critical question is whether the volatile portion of manufactured gas plant (MGP) hydrocarbons (VOCs) can be stripped out at lower temperatures such that the remaining contaminants will be unavailable for transport or subsequent dissolution into the groundwater. Soil remediation by heated soil vapor extraction system is a relatively new technology developed at the University of Wisconsin-Milwaukee [2]. The areas around chemical companies or waste disposal sites have been seriously contaminated from the chemicals and other polluting materials that are disposed off. The process developed at UWM, consists of a heater/boiler that pump and circulates hot oil through a pipeline that is enclosed in a larger-diameter pipe. This extraction pipe is vertically installed within the contaminated soil up to a certain depth and is welded at the bottom and capped at the top. The number of heat source pipes and the extraction wells depends on the type of soil, the type of pollutants, moisture content of the soil and the size of the area to be cleaned. The heat source heats the soil, which is transported in the interior part of the soil by means of conduction and convection. This heating of soil results in vaporization of the gases, which are then driven out of the soil by the extraction well. The extraction well consists of the blower which would suck the vaporized gases out of the system. Our previous studies had removed higher boiling compounds such as naphthalene, etc., to non-detectable level. Thus, the current technology is very promising for removing most of the chemicals compounds; and can also remove these high boiling compounds from the saturated zone. Gas chromatography (GC) is utilized in monitoring the relative concentration changes over the extraction period. Gas chromatography-mass spectrometry (GCMS) assists in the identification and separation of extracted components. The experimental research is currently being conducted at the University of Wisconsin-Milwaukee. The objectives of this study are to identify contaminants and time required to remove them through HSVE treatment and provide data for computation fluid dynamics CFD analysis.


Author(s):  
Ryo S. Amano ◽  
Jose Martinez Lucci ◽  
Krishna S. Guntur ◽  
M. Mahmun Hossain ◽  
M. Monzur Morshed ◽  
...  

Heated Soil Vapor Extraction (HSVE) is a technology that has been used successfully to clean up subsurface soils at sites containing chlorinated solvents and petroleum hydrocarbons. The costs have been extremely high due to the large amount of energy required to volatilize high molecular weight polycyclic aromatic hydrocarbon (PAH) compounds present in the soil matrix. One remediation contractor states that hydrocarbons are oxidized in situ by achieving temperatures in the >1000 F range near the heaters [1]. A critical question is whether the volatile portion of manufactured gas plant (MGP) hydrocarbons (VOCs) can be stripped out at lower temperatures such that the remaining contaminants will be unavailable for transport or subsequent dissolution into the groundwater. Soil remediation by heated soil vapor extraction system is a relatively new technology developed by Jay Jatkar Inc. (JJI) along with the University of Wisconsin-Milwaukee [2]. The areas around chemical companies or waste disposal sites have been seriously contaminated from the chemicals and other polluting materials that are disposed off. The process developed by JJI, consists of a heater/boiler that pump and circulates hot oil through a pipeline that is enclosed in a larger-diameter pipe. This extraction pipe is vertically installed within the contaminated soil up to a certain depth and is welded at the bottom and capped at the top. The number of heat source pipes and the extraction wells depends on the type of soil, the type of pollutants, moisture content of the soil and the size of the area to be cleaned. The heat source heats the soil, which is transported in the interior part of the soil by means of conduction and convection. This heating of soil results in vaporization of the gases, which are then driven out of the soil by the extraction well. The extraction well consists of the blower which would suck the vaporized gases out of the system. Our previous studies had removed higher boiling compounds, such as naphthalene, etc., to a non-detectable level. Thus, the current technology is very promising for removing most of the chemical compounds; and can also remove these boiling compounds from the saturated zone. Gas chromatography (GC) is utilized in monitoring the relative concentration changes over the extraction period. Gas chromatography-mass spectrometry (GC-MS) assists in the identification and separation of extracted components. The experimental research is currently being conducted at the University of Wisconsin-Milwaukee. The objectives of this study are to identify contaminants and time required to remove them through HSVE treatment and provide data for computation fluid dynamics CFD analysis.


2003 ◽  
Vol 2 (3) ◽  
pp. 368
Author(s):  
Hongkyu Yoon ◽  
Albert J. Valocchi ◽  
Charles J. Werth

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2109-2112
Author(s):  
J. G. Cleary ◽  
T. J. Boehm ◽  
R. J. Geary

Schoeller Technical Papers, Inc. (Schoeller), which manufactures photographic and other specialty papers, is located in Pulaski, New York. The wastewater treatment system consists of a primary clarifier and two settling lagoons. Secondary treatment using a biotower was proposed to meet the new New York State Pollutant Discharge Elimination System (SPDES) discharge limits for BOD and TSS. The effluent from each basin is discharged directly to the Salmon River, at an approximate average flow of 1.6 million gallons/day (mgd). A biotower pilot study was performed to evaluate the suitability of a biotower treatment process for treating the total effluent from Schoeller's facility. The pilot study was used to select the media for the full-scale biotower and to confirm the design loading for the full-scale biotower, which proceeded in parallel with the pilot study due to the schedule constraints. Two pilot systems were operated to compare a conventional cross-flow and vertical media. Test data were collected to evaluate the performance of each pilot treatment system at a range of loading conditions and to develop the design loading information for the full-scale plant. The pilot units were operated for a period of 10 months. BOD concentrations to the pilot units averaged 58 mg/l with a peak of 210 mg/l. Approximately 80% of the BOD was soluble. BOD loadings averaged 21 lb BOD/day/1,000 cubic feet with a peak of 77 lb BOD/day/1,000 cubic feet. Both pilot units achieved excellent BOD removals exceeding 75%, with average effluent soluble BOD concentration less than 10 mg/l and average effluent TSS concentrations of 12 mg/l. The two media achieved comparable performance throughout most of the pilot study.


Sign in / Sign up

Export Citation Format

Share Document