scholarly journals Isolation and characterization of fetal nucleated red blood cells from maternal blood as a target for single cell sequencing‐based non‐invasive genetic testing

Author(s):  
Noriko Ito ◽  
Kazuhiro Tsukamoto ◽  
Kosuke Taniguchi ◽  
Ken Takahashi ◽  
Aikou Okamoto ◽  
...  
Lab on a Chip ◽  
2021 ◽  
Author(s):  
YUHAO QIANG ◽  
Jia Liu ◽  
Ming Dao ◽  
E Du

Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that...


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 132 ◽  
Author(s):  
Gwo-Chin Ma ◽  
Wen-Hsiang Lin ◽  
Chung-Er Huang ◽  
Ting-Yu Chang ◽  
Jia-Yun Liu ◽  
...  

Circulating fetal cells (CFCs) in maternal blood are rare but have a strong potential to be the target for noninvasive prenatal diagnosis (NIPD). “Cell RevealTM system” is a silicon-based microfluidic platform capable to capture rare cell populations in human circulation. The platform is recently optimized to enhance the capture efficiency and system automation. In this study, spiking tests of SK-BR-3 breast cancer cells were used for the evaluation of capture efficiency. Then, peripheral bloods from 14 pregnant women whose fetuses have evidenced non-maternal genomic markers (e.g., de novo pathogenic copy number changes) were tested for the capture of circulating fetal nucleated red blood cells (fnRBCs). Captured cells were subjected to fluorescent in situ hybridization (FISH) on chip or recovered by an automated cell picker for molecular genetic analyses. The capture rate for the spiking tests is estimated as 88.1%. For the prenatal study, 2–71 fnRBCs were successfully captured from 2 mL of maternal blood in all pregnant women. The captured fnRBCs were verified to be from fetal origin. Our results demonstrated that the Cell RevealTM system has a high capture efficiency and can be used for fnRBC capture that is feasible for the genetic diagnosis of fetuses without invasive procedures.


2000 ◽  
Vol 20 (2) ◽  
pp. 169-171 ◽  
Author(s):  
Zou Li ◽  
Ye Xiaojing ◽  
Xu Keshu ◽  
Zhu Jianwen

2000 ◽  
Vol 70 ◽  
pp. B71-B71
Author(s):  
I. Hoesli ◽  
W. Holzgreve ◽  
M. Danek ◽  
C.J. Li ◽  
E. Daly-Grandeau ◽  
...  

Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 341-349
Author(s):  
EM Alderman ◽  
HH Fudenberg ◽  
RE Lovins

Autologous membrane-bound IgG was isolated from a subpopulation of human red blood cells (RBC) with specific density greater than 1.110, by affinity chromatography of purified RBC membrane glycoprotein preparations using immobilized wheat germ agglutinin and immobilized anti-human immunoglobulin (Ig) as immunoabsorbents. The Ig-containing population thus obtained, when further separated by chromatography on Sephadex G-200 in the presence of chaotropic agents, yielded four peaks (Ia, Ib, II, and III). Double immunodiffusion revealed the presence of Ig in the first three peaks (IgM in peak Ia, IgA in Ib, and IgG in II) but not in peak III. Peak III was precipitated by the Ig-containing peaks (Ia, Ib, and II) in immunodiffusion assays, suggesting that the antigenic membrane determinants responsible for the binding of autologous Ig to senescent human RBC were contained in this peak (III). Peaks Ia, Ib and II precipitate purified asialoglycophorin; peak III was reactive with purified autoantibodies directed against asialoglycophorin. These results suggest that an age-related antigenic determinant(s) present on senescent human RBC is exposed by desialylation of the major sialoglycoprotein component of the RBC membrane.


Sign in / Sign up

Export Citation Format

Share Document