A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs

2007 ◽  
Vol 30 (4) ◽  
pp. 532-563 ◽  
Author(s):  
Surender Baswana ◽  
Sandeep Sen
2021 ◽  
Vol 182 (3) ◽  
pp. 219-242
Author(s):  
Mostafa Haghir Chehreghani ◽  
Albert Bifet ◽  
Talel Abdessalem

Graphs (networks) are an important tool to model data in different domains. Realworld graphs are usually directed, where the edges have a direction and they are not symmetric. Betweenness centrality is an important index widely used to analyze networks. In this paper, first given a directed network G and a vertex r ∈ V (G), we propose an exact algorithm to compute betweenness score of r. Our algorithm pre-computes a set ℛ𝒱(r), which is used to prune a huge amount of computations that do not contribute to the betweenness score of r. Time complexity of our algorithm depends on |ℛ𝒱(r)| and it is respectively Θ(|ℛ𝒱(r)| · |E(G)|) and Θ(|ℛ𝒱(r)| · |E(G)| + |ℛ𝒱(r)| · |V(G)| log |V(G)|) for unweighted graphs and weighted graphs with positive weights. |ℛ𝒱(r)| is bounded from above by |V(G)| – 1 and in most cases, it is a small constant. Then, for the cases where ℛ𝒱(r) is large, we present a simple randomized algorithm that samples from ℛ𝒱(r) and performs computations for only the sampled elements. We show that this algorithm provides an (ɛ, δ)-approximation to the betweenness score of r. Finally, we perform extensive experiments over several real-world datasets from different domains for several randomly chosen vertices as well as for the vertices with the highest betweenness scores. Our experiments reveal that for estimating betweenness score of a single vertex, our algorithm significantly outperforms the most efficient existing randomized algorithms, in terms of both running time and accuracy. Our experiments also reveal that our algorithm improves the existing algorithms when someone is interested in computing betweenness values of the vertices in a set whose cardinality is very small.


2005 ◽  
Vol 1 (1) ◽  
pp. 11-14 ◽  
Author(s):  
Sanguthevar Rajasekaran

Given a weighted graph G(V;E), a minimum spanning tree for G can be obtained in linear time using a randomized algorithm or nearly linear time using a deterministic algorithm. Given n points in the plane, we can construct a graph with these points as nodes and an edge between every pair of nodes. The weight on any edge is the Euclidean distance between the two points. Finding a minimum spanning tree for this graph is known as the Euclidean minimum spanning tree problem (EMSTP). The minimum spanning tree algorithms alluded to before will run in time O(n2) (or nearly O(n2)) on this graph. In this note we point out that it is possible to devise simple algorithms for EMSTP in k- dimensions (for any constant k) whose expected run time is O(n), under the assumption that the points are uniformly distributed in the space of interest.CR Categories: F2.2 Nonnumerical Algorithms and Problems; G.3 Probabilistic Algorithms


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2001
Author(s):  
Konstantin Gorbunov ◽  
Vassily Lyubetsky

We propose a novel linear time algorithm which, given any directed weighted graphs a and b with vertex degrees 1 or 2, constructs a sequence of operations transforming a into b. The total cost of operations in this sequence is minimal among all possible ones or differs from the minimum by an additive constant that depends only on operation costs but not on the graphs themselves; this difference is small as compared to the operation costs and is explicitly computed. We assume that the double cut and join operations have identical costs, and costs of the deletion and insertion operations are arbitrary strictly positive rational numbers.


1996 ◽  
Vol 06 (03) ◽  
pp. 263-278 ◽  
Author(s):  
ROLF KLEIN ◽  
ANDRZEJ LINGAS

For a polygon P, the bounded Voronoi diagram of P is a partition of P into regions assigned to the vertices of P. A point p inside P belongs to the region of a vertex v if and only if v is the closest vertex of P visible from p. We present a randomized algorithm that builds the bounded Voronoi diagram of a simple polygon in linear expected time. Among other applications, we can construct within the same time bound the generalized Delaunay triangulation of P and the minimal spanning tree on P’s vertices that is contained in P.


2001 ◽  
Vol 26 (2) ◽  
pp. 245-265 ◽  
Author(s):  
N. M. Amato ◽  
M. T. Goodrich ◽  
E. A. Ramos

Algorithmica ◽  
2019 ◽  
Vol 82 (5) ◽  
pp. 1298-1328
Author(s):  
Peter Damaschke

Abstract A splittable good provided in n pieces shall be divided as evenly as possible among m agents, where every agent can take shares from at most F pieces. We call F the fragmentation and mainly restrict attention to the cases $$F=1$$F=1 and $$F=2$$F=2. For $$F=1$$F=1, the max–min and min–max problems are solvable in linear time. The case $$F=2$$F=2 has neat formulations and structural characterizations in terms of weighted graphs. First we focus on perfectly balanced solutions. While the problem is strongly NP-hard in general, it can be solved in linear time if $$m\ge n-1$$m≥n-1, and a solution always exists in this case, in contrast to $$F=1$$F=1. Moreover, the problem is fixed-parameter tractable in the parameter $$2m-n$$2m-n. (Note that this parameter measures the number of agents above the trivial threshold $$m=n/2$$m=n/2.) The structural results suggest another related problem where unsplittable items shall be assigned to subsets so as to balance the average sizes (rather than the total sizes) in these subsets. We give an approximation-preserving reduction from our original splitting problem with fragmentation $$F=2$$F=2 to this averaging problem, and some approximation results in cases when m is close to either n or n / 2.


2019 ◽  
Vol 29 (01) ◽  
pp. 21-47
Author(s):  
Mark de Berg ◽  
Ade Gunawan ◽  
Marcel Roeloffzen

We present a new algorithm for the widely used density-based clustering method dbscan. For a set of [Formula: see text] points in [Formula: see text] our algorithm computes the dbscan-clustering in [Formula: see text] time, irrespective of the scale parameter [Formula: see text] (and assuming the second parameter MinPts is set to a fixed constant, as is the case in practice). Experiments show that the new algorithm is not only fast in theory, but that a slightly simplified version is competitive in practice and much less sensitive to the choice of [Formula: see text] than the original dbscan algorithm. We also present an [Formula: see text] randomized algorithm for hdbscan in the plane — hdbscan is a hierarchical version of dbscan introduced recently — and we show how to compute an approximate version of hdbscan in near-linear time in any fixed dimension.


Sign in / Sign up

Export Citation Format

Share Document