scholarly journals Atomic Force Microscopy of Recombinant Adeno-associated Virus-2 Prepared by Centrifugation

Scanning ◽  
2007 ◽  
Vol 29 (5) ◽  
pp. 238-242 ◽  
Author(s):  
Heng Chen
2007 ◽  
Vol 13 (5) ◽  
pp. 384-389 ◽  
Author(s):  
Heng Chen

Adeno-associated virus (AAV) is a defective, nonpathogenic human parvovirus, which coinfects with a helper adenovirus or herpes virus. AAV's unique characteristics have made it an appealing vector system for gene delivery. AAV or recombinant AAV (rAAV) has been widely detected using negative stain transmission electron microscopy (TEM) but little has been detected using atomic force microscopy (AFM). In this article, we used AFM and TEM to observe the recombinant AAV-2 (rAAV-2) virus particles and applied statistical analysis to the AFM and TEM images. The results indicated that the rAAV-2 particle was a slightly elliptic particle close to round when it was detected by TEM (the mean length of major and minor axes of rAAV-2 particles was 24.77 ± 1.78 nm and 21.84 ± 1.57 nm, respectively), whereas when detected by AFM, the rAAV-2 particle was almost round. Even though the dimensions of the rAAV-2 particle exhibited a polymorphous distribution via off-line particle analysis of AFM, most of the rAAV-2 particles had a mean diameter of approximate 22.04 nm, which was similar to the results obtained by TEM. The results above suggested that AFM was important for accurately determining the average dimensions and distributions of virus particles.


2000 ◽  
Vol 10 (1-2) ◽  
pp. 15
Author(s):  
Eugene Sprague ◽  
Julio C. Palmaz ◽  
Cristina Simon ◽  
Aaron Watson

2020 ◽  
Author(s):  
Mitsunori Kitta

This manuscript propose the operando detection technique of the physical properties change of electrolyte during Li-metal battery operation.The physical properties of electrolyte solution such as viscosity (η) and mass densities (ρ) highly affect the feature of electrochemical Li-metal deposition on the Li-metal electrode surface. Therefore, the operando technique for detection these properties change near the electrode surface is highly needed to investigate the true reaction of Li-metal electrode. Here, this study proved that one of the atomic force microscopy based analysis, energy dissipation analysis of cantilever during force curve motion, was really promising for the direct investigation of that. The solution drag of electrolyte, which is controlled by the physical properties, is directly concern the energy dissipation of cantilever motion. In the experiment, increasing the energy dissipation was really observed during the Li-metal dissolution (discharge) reaction, understanding as the increment of η and ρ of electrolyte via increasing of Li-ion concentration. Further, the dissipation energy change was well synchronized to the charge-discharge reaction of Li-metal electrode.This study is the first report for direct observation of the physical properties change of electrolyte on Li-metal electrode reaction, and proposed technique should be widely interesting to the basic interfacial electrochemistry, fundamental researches of solid-liquid interface, as well as the battery researches.


Sign in / Sign up

Export Citation Format

Share Document