scholarly journals A simulation study of disaggregation regression for spatial disease mapping

2021 ◽  
Author(s):  
Rohan Arambepola ◽  
Tim C. D. Lucas ◽  
Anita K. Nandi ◽  
Peter W. Gething ◽  
Ewan Cameron
Author(s):  
Naeimehossadat Asmarian ◽  
Seyyed Mohammad Taghi Ayatollahi ◽  
Zahra Sharafi ◽  
Najaf Zare

Hierarchical Bayesian log-linear models for Poisson-distributed response data, especially Besag, York and Mollié (BYM) model, are widely used for disease mapping. In some cases, due to the high proportion of zero, Bayesian zero-inflated Poisson models are applied for disease mapping. This study proposes a Bayesian spatial joint model of Bernoulli distribution and Poisson distribution to map disease count data with excessive zeros. Here, the spatial random effect is simultaneously considered into both logistic and log-linear models in a Bayesian hierarchical framework. In addition, we focus on the BYM2 model, a re-parameterization of the common BYM model, with penalized complexity priors for the latent level modeling in the joint model and zero-inflated Poisson models with different type of zeros. To avoid model fitting and convergence issues, Bayesian inferences are implemented using the integrated nested Laplace approximation (INLA) method. The models are compared according to the deviance information criterion and the logarithmic scoring. A simulation study with different proportions of zero exhibits INLA ability in running the models and also shows slight differences between the popular BYM and BYM2 models in terms of model choice criteria. In an application, we apply the fitting models on male breast cancer data in Iran at county level in 2014.


2006 ◽  
Vol 11 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Alexander von Eye

At the level of manifest categorical variables, a large number of coefficients and models for the examination of rater agreement has been proposed and used. The most popular of these is Cohen's κ. In this article, a new coefficient, κ s , is proposed as an alternative measure of rater agreement. Both κ and κ s allow researchers to determine whether agreement in groups of two or more raters is significantly beyond chance. Stouffer's z is used to test the null hypothesis that κ s = 0. The coefficient κ s allows one, in addition to evaluating rater agreement in a fashion parallel to κ, to (1) examine subsets of cells in agreement tables, (2) examine cells that indicate disagreement, (3) consider alternative chance models, (4) take covariates into account, and (5) compare independent samples. Results from a simulation study are reported, which suggest that (a) the four measures of rater agreement, Cohen's κ, Brennan and Prediger's κ n , raw agreement, and κ s are sensitive to the same data characteristics when evaluating rater agreement and (b) both the z-statistic for Cohen's κ and Stouffer's z for κ s are unimodally and symmetrically distributed, but slightly heavy-tailed. Examples use data from verbal processing and applicant selection.


Methodology ◽  
2016 ◽  
Vol 12 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Gregor Sočan

Abstract. When principal component solutions are compared across two groups, a question arises whether the extracted components have the same interpretation in both populations. The problem can be approached by testing null hypotheses stating that the congruence coefficients between pairs of vectors of component loadings are equal to 1. Chan, Leung, Chan, Ho, and Yung (1999) proposed a bootstrap procedure for testing the hypothesis of perfect congruence between vectors of common factor loadings. We demonstrate that the procedure by Chan et al. is both theoretically and empirically inadequate for the application on principal components. We propose a modification of their procedure, which constructs the resampling space according to the characteristics of the principal component model. The results of a simulation study show satisfactory empirical properties of the modified procedure.


Methodology ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Jochen Ranger ◽  
Jörg-Tobias Kuhn

In this manuscript, a new approach to the analysis of person fit is presented that is based on the information matrix test of White (1982) . This test can be interpreted as a test of trait stability during the measurement situation. The test follows approximately a χ2-distribution. In small samples, the approximation can be improved by a higher-order expansion. The performance of the test is explored in a simulation study. This simulation study suggests that the test adheres to the nominal Type-I error rate well, although it tends to be conservative in very short scales. The power of the test is compared to the power of four alternative tests of person fit. This comparison corroborates that the power of the information matrix test is similar to the power of the alternative tests. Advantages and areas of application of the information matrix test are discussed.


2011 ◽  
Author(s):  
Sehchang Hah ◽  
Ben Willems ◽  
Kenneth Schulz

Sign in / Sign up

Export Citation Format

Share Document