Advances of Nonlinear Photonics in Low‐Dimensional Halide Perovskites

Small ◽  
2021 ◽  
pp. 2100809
Author(s):  
Gang Wang ◽  
Shiliang Mei ◽  
Jinfeng Liao ◽  
Wei Wang ◽  
Yuxin Tang ◽  
...  
2021 ◽  
Vol 33 (11) ◽  
pp. 2004446
Author(s):  
Weiqiang Chen ◽  
Feng Zhang ◽  
Cong Wang ◽  
Mingshuang Jia ◽  
Xinghang Zhao ◽  
...  

2019 ◽  
Vol 137 ◽  
pp. 38-65 ◽  
Author(s):  
Chenkun Zhou ◽  
Haoran Lin ◽  
Qingquan He ◽  
Liangjin Xu ◽  
Michael Worku ◽  
...  

Author(s):  
Noor Titan Putri Hartono ◽  
Marie-Hélène Tremblay ◽  
Sarah Wieghold ◽  
Benjia Dou ◽  
Janak Thapa ◽  
...  

Incorporating a low dimensional (LD) perovskite capping layer on top of perovskite absorber, improves the stability of perovskite solar cells (PSCs). However, in the case of mixed-halide perovskites, which can...


2020 ◽  
Author(s):  
Brenda Vargas ◽  
Diana T. Reyes-Castillo ◽  
Eduardo Coutino-Gonzalez ◽  
Citlali Sánchez-Aké ◽  
Carlos Ramos ◽  
...  

Halide perovskites offer great promise for optoelectronic applications, but stability issues continue to hinder its implementation and long-term stability. The stability of all-inorganic halide perovskites and the inherent quantum confinement of low dimensional perovskites can be harnessed to synthesize materials with high PL efficiency. An example of such materials is the recently reported new family of layered double perovskites, Cs4Mn1−xCdxBi2Cl12. Herein, we report a new synthetic procedure that enhances the maximum PLQY of this family materials to up 79.5%, a 20% enhancement from previous reports and the highest reported for a Mn-doped halide perovskite. Importantly, stability tests demonstrate that these materials are very stable towards humidity, UV irradiation, and temperature. Finally, we investigated the photophysics, the effects of magnetic coupling and temperature in the PL efficiency and proposed a mechanism for the emission process. Our results highlight the potential of this family of materials and related layered all-inorganic perovskites for solid-state lighting and optoelectronic applications<p></p>


2020 ◽  
Author(s):  
Brenda Vargas ◽  
Diana T. Reyes-Castillo ◽  
Eduardo Coutino-Gonzalez ◽  
Citlali Sánchez-Aké ◽  
Carlos Ramos ◽  
...  

Halide perovskites offer great promise for optoelectronic applications, but stability issues continue to hinder its implementation and long-term stability. The stability of all-inorganic halide perovskites and the inherent quantum confinement of low dimensional perovskites can be harnessed to synthesize materials with high PL efficiency. An example of such materials is the recently reported new family of layered double perovskites, Cs4Mn1−xCdxBi2Cl12. Herein, we report a new synthetic procedure that enhances the maximum PLQY of this family materials to up 79.5%, a 20% enhancement from previous reports and the highest reported for a Mn-doped halide perovskite. Importantly, stability tests demonstrate that these materials are very stable towards humidity, UV irradiation, and temperature. Finally, we investigated the photophysics, the effects of magnetic coupling and temperature in the PL efficiency and proposed a mechanism for the emission process. Our results highlight the potential of this family of materials and related layered all-inorganic perovskites for solid-state lighting and optoelectronic applications<p></p>


2020 ◽  
Vol 124 (47) ◽  
pp. 25686-25700
Author(s):  
Aaron D. Nicholas ◽  
Ryan N. Halli ◽  
Leah C. Garman ◽  
Christopher L. Cahill

2018 ◽  
Vol 27 (11) ◽  
pp. 114209 ◽  
Author(s):  
Zhen Liu ◽  
Chun Li ◽  
Qiu-Yu Shang ◽  
Li-Yun Zhao ◽  
Yang-Guang Zhong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document