scholarly journals Morphology Transformation of Foldamer Assemblies Triggered by Single Oxygen Atom on Critical Residue Switch

Small ◽  
2021 ◽  
pp. 2102525
Author(s):  
Byung‐Chang Oh ◽  
Eunyoung Yoon ◽  
Jintaek Gong ◽  
Jaewook Kim ◽  
Russell W. Driver ◽  
...  
Small ◽  
2021 ◽  
Vol 17 (36) ◽  
pp. 2170186
Author(s):  
Byung‐Chang Oh ◽  
Eunyoung Yoon ◽  
Jintaek Gong ◽  
Jaewook Kim ◽  
Russell W. Driver ◽  
...  

2009 ◽  
Vol 64 (11-12) ◽  
pp. 1369-1374 ◽  
Author(s):  
Werner Uhl ◽  
Mohammad R. Halvagar ◽  
Henrik R. Bock ◽  
Beate Jasper-Peter ◽  
Marcus Layh

Treatment of (Me3C)2Ga-CH(SiMe3)2 (1) with oxygen gave the oxidation of both quaternary carbon atoms of the tert-butyl groups, while the bis(trimethylsilyl)methyl substituent was not affected. One tert-butyl group was transferred to an alkoxide which in the dimeric formula unit of the product 2 occupies the bridging position between both gallium atoms. The second one afforded a terminally arranged tert-butylperoxo ligand by the insertion of a complete oxygen molecule into the respective Ga-C bond. Another organogallium peroxide (5) was obtained by the reaction of Li(OEt2)[H3GaCH(SiMe3)2] (3) with H-O-O-CMe2OMe (4). Two hydrido ligands of the trihydridogallanate were replaced by peroxo groups, while the third Ga-H bond gave a hydroxide (Ga-OH) by insertion of a single oxygen atom. The product, Li[Ga(OH)(OOCMe2OMe)2R] [5, R=CH(SiMe3)2], forms a singular dimeric formula unit with a complicated oligocyclic structure in which all peroxo groups are in bridging positions between lithium and gallium atoms


2014 ◽  
Vol 168 ◽  
pp. 167-184 ◽  
Author(s):  
Helen J. Kimber ◽  
Courtney P. Ennis ◽  
Stephen D. Price

Experiments designed to simulate the low temperature surface chemistry occurring in interstellar clouds provide clear evidence of a reaction between oxygen atoms and propyne ice. The reactants are dosed onto a surface held at a fixed temperature between 14 and 100 K. After the dosing period, temperature programmed desorption (TPD), coupled with time-of-flight mass spectrometry, are used to identify two reaction products with molecular formulae C3H4O and C3H4O2. These products result from the addition of a single oxygen atom, or two oxygen atoms, to a propyne reactant. A simple model has been used to extract kinetic data from the measured yield of the single-addition (C3H4O) product at surface temperatures from 30–100 K. This modelling reveals that the barrier of the solid-state reaction between propyne and a single oxygen atom (160 ± 10 K) is an order of magnitude less than that reported for the gas-phase reaction. In addition, estimates for the desorption energy of propyne and reaction rate coefficient, as a function of temperature, are determined for the single addition process from the modelling. The yield of the single addition product falls as the surface temperature decreases from 50 K to 30K, but rises again as the surface temperature falls below 30 K. This increase in the rate of reaction at low surface temperatures is indicative of an alternative, perhaps barrierless, pathway to the single addition product which is only important at low surface temperatures. The kinetic model has been further developed to characterize the double addition reaction, which appears to involve the addition of a second oxygen atom to C3H4O. This modelling indicates that this second addition is a barrierless process. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and propyne could occur under on interstellar dust grains on an astrophysical time scale.


2015 ◽  
Vol 137 (49) ◽  
pp. 15354-15357 ◽  
Author(s):  
Julia M. Stauber ◽  
Eric D. Bloch ◽  
Konstantinos D. Vogiatzis ◽  
Shao-Liang Zheng ◽  
Ryan G. Hadt ◽  
...  

1984 ◽  
Vol 220 (1) ◽  
pp. 235-242 ◽  
Author(s):  
F F Morpeth ◽  
G N George ◽  
R C Bray

Formamide is a substrate of xanthine oxidase. At pH 8.2 and 1.14 mM-O2, Vmax.(app.) is 3.1 s-1 and Km (app.) is 0.7 M. Mo(V) e.p.r. signals obtained by treating the enzyme with formamide were studied, and these provide new information about the ligation of molybdenum in the enzyme and about the enzymic mechanism. The substrate is the first compound that is not a nitrogen-containing heterocycle to give a Very Rapid signal. This supports the hypothesis that the Very Rapid signal, though it is not detectable with all substrates, represents an essential intermediate in turnover. Formamide also gives the Inhibited signal and is the first non-aldehyde substrate to do so. The Rapid type 1 signal obtained in the presence of formamide was examined in H2O enriched with 2H or with 17O. The single oxygen atom detectable in the signal is shown to be strongly and anisotropically coupled. This indicates that this atom remains as an oxo ligand of molybdenum in this signal-giving species. Other structural features of this species are discussed.


2020 ◽  
Vol 142 (14) ◽  
pp. 6834-6834
Author(s):  
Julia M. Stauber ◽  
Eric D. Bloch ◽  
Konstantinos D. Vogiatzis ◽  
Shao-Liang Zheng ◽  
Ryan G. Hadt ◽  
...  

1996 ◽  
Vol 113 (1-2) ◽  
pp. 23-34 ◽  
Author(s):  
Sandrine Vilain-Deshayes ◽  
Anne Robert ◽  
Philippe Maillard ◽  
Bernard Meunier ◽  
Michel Momenteau

Sign in / Sign up

Export Citation Format

Share Document