Nano epitaxy growth of Sb 2 Se 3 nanorod arrays on mixed oriented transparent conducting oxide coated glass for efficient and quasi‐omnidirectional solar cells

Solar RRL ◽  
2021 ◽  
Author(s):  
Xiaoyang Liang ◽  
Zhiqiang Li ◽  
Xingyuan San ◽  
Tao Liu ◽  
Yufan Liu ◽  
...  
2019 ◽  

Transparent conducting oxide (TCO) thin films are materials of significance for their applications in optoelectronics and sun powered cells. Fluorine-doped tin oxide (FTO) is an elective material in the advancement of TCO films. This paper reports the impact of fluorine doping on structural, optical and electrical properties of tin oxide thin films for solar cells application. The sol-gel was prepared from anhydrous stannous chloride, SnCl2 as an originator, 2-methoxyethanol as a solvent, di-ethanolamine as a preservative and ammonium fluoride as the dopant source. FTO precursor solution was formulated to obtain 0, 5, 10, 15 and 20 % doping concentration and deposited on glass substrates by means of spin coater at the rate of 2000 rpm for 40 seconds. After pre-heated at 200 oC, the samples were annealed at 600 oC for 2 h. The structural, optical and electrical characteristics of prepared films were characterized using X-ray diffraction (XRD) analysis, UV-visible spectroscopy and electrical measurement. X-ray diffraction (XRD) investigation of the films demonstrated that the films were polycrystalline in nature with tetragonal-cassiterite structure with most extraordinary pinnacle having a grain size of 17.01 nm. Doping with fluorine decreases the crystallite size. There was increment in the absorbance of the film with increasing wavelength and the transmittance was basically reduced with increasing fluorine doping in the visible region. The energy band gaps were in the range of 4.106-4.121 eV. The sheet resistance were observed to decrease as the doping percentage of fluorine increased with exception at higher doping of 15 and 20 %. In view of these outcomes, FTO thin films prepared could have useful application in transparent conducting oxide electrode in solar cell.


2011 ◽  
Vol 1327 ◽  
Author(s):  
Dong Won Kang ◽  
Jong Seok Woo ◽  
Sung Hwan Choi ◽  
Seung Yoon Lee ◽  
Heon Min. Lee ◽  
...  

ABSTRACTWe have propsed MgO/AZO bi-layer transparent conducting oxide (TCO) for thin film solar cells. From XRD analysis, it was observed that the full width at half maximum of AZO decreased when it was grown on MgO precursor. The Hall mobility of MgO/AZO bi-layer was 17.5cm2/Vs, whereas that of AZO was 20.8cm2/Vs. These indicated that the crystallinity of AZO decreased by employing MgO precursor. However, the haze (=total diffusive transmittance/total transmittance) characteristics of highly crystalline AZO was significantly improved by MgO precursor. The average haze in the visible region increased from 14.3 to 48.2%, and that in the NIR region increased from 6.3 to 18.9%. The reflectance of microcrystalline silicon solar cell was decreased and external quantum efficiency was significantly improved by applying MgO/AZO bi-layer TCO. The efficiency of microcrystalline silicon solar cell with MgO/AZO bi-layer front TCO was 6.66%, whereas the efficiency of one with AZO single TCO was 5.19%.


2012 ◽  
Vol 79 ◽  
pp. 284-287 ◽  
Author(s):  
Mingeon Kim ◽  
Joondong Kim ◽  
Hyunyub Kim ◽  
Yun Chang Park ◽  
Kyungyul Ryu ◽  
...  

2009 ◽  
Vol 17 (4) ◽  
pp. 265-272 ◽  
Author(s):  
J. W. Bowers ◽  
H. M. Upadhyaya ◽  
S. Calnan ◽  
R. Hashimoto ◽  
T. Nakada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document