The Effect of Ladle Treatment on Inclusion Composition in Tool Steel Production

2008 ◽  
Vol 79 (4) ◽  
pp. 261-270 ◽  
Author(s):  
Johan Björklund ◽  
Margareta Andersson ◽  
Mselly Nzotta ◽  
Pär Jönsson
Author(s):  
V. A. Golubtsov ◽  
I. V. Ryabchikov ◽  
I. V. Bakin ◽  
A. Ya. Dynin ◽  
O. N. Romanov ◽  
...  

Contamination of steel by nonmetallic inclusions (NI) has a negative effect on mechanical characteristics of metal used under no favorable conditions. Conditions of NI forming in the process of steel smelting, ladle treatment and casting considered. It was shown that it is impossible to get rid of many NI. However, the task of forming less “harmful” NI having minimal effect on the decrease of finished products indices is quite practicable. To refine steel of NI it is reasonable to accomplish operations in a melt to modify NI morphology from dangerous acute-angled aluminous to globular oxide-sulphide. This task can be solved by introduction into metal complex modifiers comprising calcium, barium, strontium and rare earth metals. Addition of complex modifiers is a good alternative to complicative and long-time operations to decrease NI general content to lower levels, for example, by long-time metal ladle treatment. Application of the method enables in some situation to avoid expensive operations related to deep metal desulphuri zation and its dehydronization. Clean steel production becomes considerably easier at application of multicomponent alloys, obtained by a technology of accelerated crystallization. Application of such compositions results in forming globular oxide and oxide-sulphide compounds, as well as eutectics with low-melting point, which are comparatively quickly removed out of liquid metal. At that due to decreasing of liquation processes forming in the liquid metal, higher quality of large ingots and work-pieces, obtained from 420 t mass ingots can be reached.


2018 ◽  
Vol 48 (1) ◽  
pp. 45-48
Author(s):  
S. I. Ivanitsa ◽  
L. M. Aksel’rod ◽  
I. V. Kushnerev ◽  
S. V. Verbnyi ◽  
G. S. Ashina ◽  
...  

2020 ◽  
Vol 835 ◽  
pp. 13-21
Author(s):  
Islam Salem ◽  
Mohamed Kamal El-Fawkhry ◽  
Ahmed A. Abdel-Khalek ◽  
M.H. Khedr ◽  
Taha Mattar

Secondary phase carbides in term of type and morphology are considered as the most challenge facing the applications of hot work tool steel. AISI H13 tool steel is one of the most applicable hot work tool steel grades. M23C6, M6C and MC are the common secondary carbides that are forming throughout the martensite matrix of H13 tool steel. In this research, nanoinoculant silicon nitride was added to the molten H13 tool steel to act as an inoculant for the secondary carbide categories through ladle treatment process. By using OM and SEM, it was observed that nanoinoculant has the great impact in the nucleation of secondary carbides into fine shape, in particular M23C6 type. In addition, mechanical tests proved that the nucleation of secondary carbides promotes the mechanical properties of hot work H13 tool steel to its ultimate. Impact toughness of the inoculated H13 tool steel was observed with higher value than that was done at the ordinary H13 tool steel. At the meantime, wear resistance of inoculated H13 tool steel was multiplied two times higher than as delivered H13 tool steel.


2018 ◽  
Vol 58 (6) ◽  
pp. 660-665 ◽  
Author(s):  
I. V. Kushnerev ◽  
G. V. Serov ◽  
S. M. Tikhonov ◽  
D. V. Kuznetsov ◽  
L. M. Aksel’rod

Author(s):  
V. A. Spirin ◽  
V. E. Nikol’skii ◽  
D. V. Vokhmintsev ◽  
A. A. Moiseev ◽  
P. G. Smirnov ◽  
...  

At steel production based on scrap metal utilization, the scrap heating before charging into a melting facility is an important way of energy efficiency increase and ecological parameters improving. In winter time scrap metal charging with ice inclusions into a metal melt can result in a considerable damage of equipment and even accidents. Therefore, scrap preliminary drying is necessary to provide industrial safety. It was shown, that in countries with warm and low-snow climate with no risk of scrap metal icing up during its transportation and storing in the open air, the basic task being solved at the scrap drying is an increase of energy efficiency of steelmaking. InRussiathe scrap metal drying first of all provides the safety of the process and next - energy saving. Existing technologies of scrap metal drying and heating considered, as well as advantages and drawbacks of technical solutions used at Russian steel plants. In winter time during scrap metal heating at conveyers (Consteel process) hot gases penetrate not effectively into its mass, the heat is not enough for evaporation of wetness in the metal charge. At scrap heating by the furnace gases, a problem of dioxines emissions elimination arises. Application of shaft heaters results in high efficiency of scrap heating. However, under conditions of Russian winter the upper scrap layers are not always heated higher 0 °С and after getting into a furnace bath the upper scrap layers cause periodical vapor explosions. The shaft heaters create optimal conditions for dioxines formation, which emit into atmosphere. It was shown, that accounting Russian economic and nature conditions, the metal charge drying and heating in modified charging buckets by the heat of burnt natural gas or other additional fuel is optimal. The proposed technical solution enables to burnt off organic impurities ecologically safely, to melt down ice, to evaporate the wetness in the scrap as well as to heat the charge as enough as the charging logistics enables it. The method was implemented at several Russian steel plants. Technical and economical indices of scrap metal drying in buckets under conditions of EAF-based shop, containing two furnaces ДСП-100, presented.


Sign in / Sign up

Export Citation Format

Share Document